极限类型二

0 < a 1 < π , a n + 1 = s i n a n 0 \lt a_1 \lt \pi,a_n+_1=sina_n 0<a1<πan+1=sinan,求证 lim ⁡ n → ∞ a n   ∃ \lim_{n \to \infty} a_n\space\exists limnan ,并求出

证:

0 < a 1 < π 0 \lt a_1 \lt \pi 0<a1<π,∴ a 2 ∈ ( 0 , 1 ) ⊂ ( 0 , π 2 ) a_2\in(0,1)\subset(0,\frac{\pi}{2}) a2(0,1)(0,2π),∴ a n > 0 ( n = 1 , 2 , 3 , . . . ) a_n\gt0\quad(n=1,2,3,...) an>0(n=1,2,3,...)(有下界)
x > 0 时 , s i n x < x x\gt0时,sinx\lt x x>0sinx<x,∴ a n + 1 = s i n a n < a n a_n+_1=sina_n\lt a_n an+1=sinan<an即{ a n a_n an}单调递减
lim ⁡ n → ∞ a n   ∃ \lim_{n \to \infty} a_n\space\exists limnan 
lim ⁡ n → ∞ a n = A , 由 a n + 1 = s i n a n \lim_{n \to \infty}a_n=A,由a_n+_1=sina_n limnan=Aan+1=sinan
   ⟹    A = s i n A    ⟹    A = 0 \implies A=sinA \qquad \implies A=0 A=sinAA=0



a 1 > 0 , a n + 1 = l n ( 1 + a n ) a_1>0, a_n+_1=ln(1+a_n) a1>0,an+1=ln(1+an),求证:① lim ⁡ x → ∞ a n \lim_{x\to \infty}a_n limxan存在,并求之;② lim ⁡ x → ∞ a n + 1 − a n a n + 1 ∗ a n \lim_{x\to \infty}\frac{a_n+_1 - a_n}{a_n+_1*a_n} limxan+1anan+1an

证:

①∵ a 1 > 0 a_1>0 a1>0,设 a n > 0 a_n>0 an>0,则有 a k + 1 = l n ( 1 + a k ) > 0 a_k+_1=ln(1+a_k)>0 ak+1=ln(1+ak)>0
对 于 ∀ n , 存 在 a n > 0 对于\forall n,存在a_n>0 nan>0
x > 0 时 , l n ( 1 + x ) < x x>0时,ln(1+x)<x x>0ln(1+x)<x,∴ a n + 1 = l n ( 1 + a n ) < a n a_n+_1=ln(1+a_n)<a_n an+1=ln(1+an)<an,∴{ a n a_n an}单调递减
lim ⁡ x → ∞ a n     ∃ \lim_{x\to \infty}a_n\space\space\space\exists limxan   
lim ⁡ n → ∞   a n = A \lim_{n\to \infty}\space a_n=A limn an=A,由 a n + 1 = l n ( 1 + a n )    ⟹    A = l n ( 1 + A ) a_n+_1=ln(1+a_n) \implies A=ln(1+A) an+1=ln(1+an)A=ln(1+A) ,可推出A = 0
②原式= lim ⁡ x → ∞ a n + 1 − a n a n + 1 ∗ a n \lim_{x\to \infty}\frac{a_n+_1 - a_n}{a_n+_1*a_n} limxan+1anan+1an,令 a n = t a_n=t an=t,有
lim ⁡ t → 0 l n ( 1 + t ) − t l n ( 1 + t ) ∗ t ( 此 处 采 用 洛 必 达 法 则 ) = lim ⁡ t → 0 l n ( 1 + t ) − t t 2 = lim ⁡ t → 0 1 1 + t − 1 2 t = − 1 2 \lim_{t\to 0}\frac{ln(1+t)-t}{ln(1+t)*t}(此处采用洛必达法则)=\lim_{t\to 0}\frac{ln(1+t)-t}{t^2}=\lim_{t\to0}\frac{\frac{1}{1+t}-1}{2t}=-\frac{1}{2} limt0ln(1+t)tln(1+t)t()=limt0t2ln(1+t)t=limt02t1+t11=21
或采用ln(1+x)的泰勒公式,如下:
lim ⁡ t → 0 l n ( 1 + t ) − t l n ( 1 + t ) ∗ t = lim ⁡ t → 0 l n ( 1 + t ) − t t 2 = lim ⁡ t → 0 t − 1 2 t 2 + o ( t ) − t t 2 = − 1 2 \lim_{t\to 0}\frac{ln(1+t)-t}{ln(1+t)*t}=\lim_{t\to 0}\frac{ln(1+t)-t}{t^2}=\lim_{t\to0}\frac{t-\frac{1}{2}t^2+o(t)-t}{t^2}=-\frac{1}{2} limt0ln(1+t)tln(1+t)t=limt0t2ln(1+t)t=limt0t2t21t2+o(t)t=21



a 1 = 2 , a n + 1 = 1 2 ( a n + 1 a n ) a_1=2,a_n+_1=\frac{1}{2}(a_n+\frac{1}{a_n}) a1=2an+1=21(an+an1),求证: lim ⁡ n → ∞ a n ∃ \lim_{n\to \infty} a_n \exists limnan

证:

由题目可知, a n a_n an均为正数,∴可得 a n + 1 a n ≥ 2 a_n+\frac{1}{a_n}\ge2 an+an12,∴ a n + 1 ≥ 1 a_n+_1\ge1 an+11(有下界)
a n + 1 − a n = 1 2 ( a n + 1 a n ) − a n = 1 − a n 2 2 a n ≤ 0 a_n+_1-a_n=\frac{1}{2}(a_n+\frac{1}{a_n})-a_n=\frac{1-a_n^2}{2a_n}\le0 an+1an=21(an+an1)an=2an1an20,∴{ a n a_n an}单调递减
∴极限存在

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值