等几何分析

等几何分析

概述

等几何分析(IGA)是新型的有限元理论。它通常采用等参分析思想,其计算域模型为二维情况下的平面NURBS曲面或三维情况下的三变量NURBS参数体;计算单元为节点区间构建的NURBS曲面单元或NURBS体单元;形参数为NURBS基函数,拟求解的未知变量为控制顶点。

等几何分析方法是基于有限元分析方法的等参单元思想,将计算机辅助几何设计(CAGD)中用于表达几何模型的非均匀有理B样条(NURBS)的基函数作为形参数,实现了计算机辅助设计(CAD)和计算机辅助工程(CAE)的无缝结合。

等几何分析可以精确地表述模型的几何特征,精度更高。在网格细化上,等几何分析不仅拥有通用的h-细化策略和p-细化策略,同时还拥有一种独有的 k-细化策略,细化精度更高,细化速度更快。从优化的角度看,设计与仿真实现了集成,可以根据仿真分析后的结果直接对设计结构进行几何修改,提高了结构设计优化的效率。

特点

由于NURBS基函数可以构造任意高阶连续的近似函数,克服了有限元分析方法通常仅有C^0连续性的弊端,使等几何分析方法可以方便地求解薄板壳等高阶问题。目前等几何分析方法已成功用于固体、流体、电磁、振动和裂纹扩散等模型的分析,并展现出其相对有限元分析方法的很大优势,如:无需进行几何模型转换,单元细分简便且不损失几何精度以及便于求解高阶连续问题等

在实现计算机辅助设计(CAD)和计算机辅助工程(CAE)结合的同时,等几何分析方法也自然在结构优化中拥有了独到的优势。它可直接将几何模型的NURBS控制点作为优化对象,并根据优化后的控制点坐标和权值简便精确地得到优化后的形状,而且优化后的边界是光滑连续的NURBS曲线。

在这里插入图片描述
等几何分析方法的几何模型均采用参数表示,其网格的划分和细化与经典有限元不同,仅需要在参数域上进行自然划分或插点细分,避免了对分析网格模型直接操作,省去了经典有限元中专门划分网格的过程,加快了分析周期。等几何分析利用构建模型的基函数为形函数进行计算,其单位节点精度远高于经典有限元。

三种重要分析的概念
  1. 应力分析

应力分析是检查产品在施加力时的应力(物体内部产生的力)和"变形"的分析。例如,当支架受力时,可以分析力如何变形,以及力集中在哪个部分,这样,就可以在制作真实物体之前检查支架在实际使用中是否损坏。

  1. 震动分析

振动分析是研究物体振动时如何变形的分析,以及每秒振动的周期如何产生共振。(共振是物体的自然频率和施加的振动频率匹配并发生大振动的现象)

例如,当触摸长标尺时,标尺会变形。 当我改变速度时,变形的方式会发生变化。

因此,振动分析可以分析振动时的"变形方式"和"变形量"。 此外,还可以通过在变形时寻求"应力"来确定是否断裂。

这是一种分析技术,用于汽车和飞机等振动问题产品。

  1. 热分析

热分析是计算"物体温度"和"热传导"作为热移动现象的分析,用于研究产品是否处于使用范围内的温度。

例如,可以计算活塞燃烧时的热量温度分布,该温度是发动机部件,并使用温度结果来确定热应力。热传导分析是一种重要分析技术,用于验证发动机等热发动机和电子产品的热。

等几何分析的简单示例:
  1. 结构分析

    几何模型在CAGD软件中建立,然后通过程序读取模型信息并直接进行等几何分析,中间无需进行模型转换。下图展示了结构几何模型(左)、NURBS控制点网格(中上)、结构物理空间网格(中下)和Von mises应力云图(右)。

    应力云图是有限元软件里面生成的在给定外力作用下表现出来的各部分应力大小和分布的云图。

    应力:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G7WBtNjf-1647766859990)(等几何分析以及应用.assets/image-20211118104052427.png)]

  2. 结构优化

    几何模型的NURBS控制点可直接作为结构优化变量。在应力约束下,以结构质量最小为目标,通过对控制点坐标的优化可快速得到支架的最优形状。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TJLXlGUN-1647766859992)(等几何分析以及应用.assets/结构优化.gif)]

等几何分析的应用

等几何分析提出至今,其理论已经得到了很好的完善,其应用已经扩展到了各个领域。在结构力学问题的分析上,等几何分析有独特的优势。板壳问题的应用就很好地证明了等几何分析相比于传统方法的优势。

板壳结构在航空航天、海洋船舶工程、机械制造、石油化工、精密仪器、车辆工程、土木工程等领域有着广泛的应用。数值方法分析板壳结构的力学行为(静力弯曲、自振特性、屈曲稳定)需要形函数高阶连续,因此等几何分析非常适合分析板壳问题。

在CAD建模中,复杂几何模型,如含接口的板壳模型,通常采用一系列布尔运算如并、交及减等裁剪获得。采用这种方式建立模型最终生成是裁剪NURBS曲面,根据裁剪曲面构造裁剪单元用于等几何分析。

梁构件是一种重要的结构元件,在各个领域都有广泛的应用。在工程实践中,梁构件在外载荷的作用下会产生较大的变形,需要使用非线性分析方法,采用样条函数精确描述梁结构几何构型,适用于曲梁结构的仿真分析,同时避免了传统有限元分析的网格生成前处理过程,提高了计算精度。

还可以通过等几何分析进行心脏建模和力学分析,通过对心脏CT图像的手动分割得到的左心室七个相位的内外壁特征点,计算出控制点与基函数,并用等几何仿真和插值法对内外壁之间的区域进行实体拟合,获得带控制点的左心室实体模型,最后利用应力应变方程有效的计算出施加在心室壁上的某一时刻应力应变分布情况。

等几何分析的流程

  1. 利用NURBS造型技术建立要分析的几何模型,通过对于造型中给定的节点在实体表面上生成二维或三维网格。
  2. 初始节点将实体划分为多个"单元",可以通过细化策略(h,p或k细化方法)进行网格细分,通常等几何的网格细化策略能在不改变几何形状的同时提高计算精度,经过细化后可得到高密度或高阶的网格单元。
  3. 引入等参元概念,将未知变量(如位移,应力,温度等)表示成与描述几何形状相同的基函数与相关系数的线性组合,相关系数通常为自由度或者控制顶点变量
  4. 采用伽辽金法,将NURBS单元网格的单元刚度矩阵装配到全局刚度矩阵中
  5. 对于给定的边界条件应用于上述提到的控制顶点变量,利用线性方程组求解出控制顶点变量即可求解出实体上实际的变形量(位移等未知变量)
    在这里插入图片描述

等几何分析的优点

等几何分析不可直接在已有的网格模型上进行细化,它的网格划分不需要ASG模型,如下图所示等几何分析与经典有限元的差异。
在这里插入图片描述

等几何分析的优势:

  1. 等几何分析采用样条模型参数域的划分以及参数域到物理模型的映射,避免了有限元中网格划分的复杂过程
  2. 等几何分析中几何模型和分析网络模型采用同一表达方式,避免了网格细化过程中与几何模型数据的频繁交互,有利于实现自适应网格细化
  3. 等几何分析的结果精度高,其分析使用的多项式直接来源于几何模型数据,避免了经典有限元中采用分段多项式逼近的方式而引入的误差

等几何分析方法以CAD中样条理论为基础实现,旨在对分析目标精确表达和分析建模。

等几何分析外传

目前B样条和NURBS已成为等几何分析方法中最常用的模型描述方式,可以尝试用其他样条代替原来最常用的样条来对模型进行描述。(改造样条基)

等几何分析方法中最关键的是模型的参数域,参数域不仅是描述几何模型和分析模型基函数的定义域,也是分析模型中网格划分和细化的操作域。

等几何分析:边界条件的施加,接触分析,结构优化等。

等几何分析的过程,以有限元中的等参思想为基础。

基于其他样条的等几何形状优化技术

等几何分析(零碎)

在等几何分析中,参数空间中的单元是由节点划分的。

等几何分析的核心是利用实体的几何描述直接进行分析计算,避免传统有限元的二次建模,消除几何模型和计算模型之间存在的误差。

在等几何分析中,单元的定义不同于传统有限元,通常定义在参数坐标上。

在等几何分析中,每个NURBS曲面被称为“片”,每个片内至少包含一个单元,相当于传统有限元中的子域。

等几何分析的根本思想是将用于精确几何建模的基函数同样用作数值方法解空间的基函数。

单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换称之为等参变换,采用等参变换的单元即为等参元

等几何分析的思想和传统有限元的等参思想的根本区别在于:在经典FEA中,选用近似未知解空间的基函数离散已知几何域;而在等几何分析中,则采用反向思维,选用精确构造几何的基函数作为近似解空间的基函数。

假设节点矢量构成的计算区域为参数域,B样条或NURBS曲面(或实体)为实体几何域。对张量积样条基函数进行线性重排序,则参数坐标系与实际坐标系之间的映射为:

x = G ( ξ ) = ∑ i = 1 n N i ( ξ ) d i x=G(\xi)=\sum_{i=1}^nN_i(\xi)d_i x=G(ξ)=i=1nNi(ξ)di

式中 N i ( ξ ) N_i(\xi) Ni(ξ) 表示NURBS基函数, d i d_i di 表示控制顶点,n表示基函数个数,x=(x,y,z)或x=(x,y)表示实际笛卡尔坐标系, ξ = ( ξ , η , ζ ) \xi=(\xi,\eta,\zeta) ξ=(ξ,η,ζ) ξ = ( ξ , η ) \xi=(\xi,\eta) ξ=(ξ,η) 表示参数坐标。

任意场变量的近似表达:

u h ( x ) = ∑ i = 1 n Φ i ( x ) u i      x ∈ Ω u_h(x) = \sum_{i=1}^n\Phi_i(x)u_i\ \ \ \ x\in\Omega uh(x)=i=1nΦi(x)ui    xΩ

式中 ϕ i ( x ) \phi_i(x) ϕi(x) 表示形状函数, ϕ i ( x ) = N i ( ξ ) ∘ G − 1 ( x ) \phi_i(x)=N_i(\xi)\circ G^{-1}(x) ϕi(x)=Ni(ξ)G1(x) , 记号 ∘ \circ 表示函数复合, u i u_i ui 表示控制顶点处的物理场值,在等几何分析中又称为控制变量。

等几何分析采用了精确几何离散,有限元则是使用多项式近似。

等几何分析在工程应用时,摒弃了传统有限元的网格划分过程,保持了几何模型的精确性,具有计算精度高,流程快,适应范围广等优点。

边界问题求解

边界值问题求解,为了研究等几何分析的思想,考虑求解边界值问题泊松方程(偏微分方程)。

很多情况下问题的解析解是很难得到的,通常寻找的是问题的数值解

数值解是在一定条件下通过某种近似计算得出来的一个数值,能在给定的精度条件下满足方程

解析解为方程的解析式(比如求根公式之类的),是方程的精确解,能在任意精度下满足方程

伽辽金方法将求解域进行逼近处理,即将一个求解域用有限维空间近似。

有限元分析(FEA)

在数学上,有限元分法是一种为偏微分方程的边界值问题寻找近似解的数值计算方法,既然是数值计算方法,所以是没有精确解的。**它将一个区域分成简单的小单元,这些小单元称为有限元,并使用各种微积分的各种求解方法在最小误差函数下求解问题。**类似于连接许多小段直线可以近似逼近一个圆一样,有限元法综合每个小单元的方程去近似逼近整个大范围内的方程域。

面对一个模型我们需要综合考虑各种因素来选择划分的网格类型,况且除了3D单元以外,还有1D和2D单元,不同的场合选择也是不一样的。大多数情况下我们会采用3D四面体网格,但不是所有样子的3D四面体网格都是可行的,我们需要检查其各种参数,比如长宽比,扭曲系数,雅可比因子等等,只有通过一定的参数检查,我们才能保证结果的准确。

另外在划分网格以前,我们还要对模型进行处理,也称为模型理想化,既要把对分析结果没什么影响的结构给去掉,比如细小孔和其它细微结构,还有就是有问题的地方比如破面等要修复。因为一个结构如果太过于细微,那么网格划分是很难成功的,因此需要先理想化地去除。

网格划分的好,边界条件也有了,那么后面的求解和后处理也就变得简单了。

有限元分析的一般流程为:结构离散(网格划分)——单元构造(确定位移插值方法)——单元分析(局部刚度矩阵)——整体结构分析(所有单元组装成整刚矩阵)——施加边界条件(边值、初值)——构造方程、解方程(数值方法求近似解)

为什么有限元分析要先进行前处理划分网格?其实就是把原本的CAD模型(NURBS参数公式)转化成CAE模型(有限元位移插值公式),而等几何分析(IGA)便是直接将NURBS曲线曲面表达式中的基函数拿来,作为有限元位移场的插值形函数,使得CAD模型和CAE模型具有统一的数学表达形式。

IGA直接利用NURBS基函数作为位移形函数,这有什么用呢?

首先,省去网格划分:不同于FEM每次要将CAD模型离散成很小的网格单元,IGA将原本的复杂曲面分割成一块块的不那么复杂的子级曲面片(patch)。本质上IGA还是基于有限元的“分割”思想,但是,相比较有限元动辄千万个几毫米的线性网格,IGA可以用很少很大的几个patch来逼近原模型,前处理的工作量大大减少。更重要的是,前处理的减负不仅仅体现在某一次的模型分析中,须知实际工程中的模型迭代更新是很频繁的,以汽车为例,往往从预研到SOP期间要经过3到5轮分析,每次分析都意味着有限元网格的重新划分和建模,而使用IGA方法,等CAD模型更新后,其patch也会同步更新(因为patch用的形函数就是NURBS基函数),无需或者简单调整模型即可直接进行分析。

其次,几何精确性:由于patch使用了和原模型相同的数学表达式(NURBS基函数),几乎可以说是原模型的“分裂体”,逼近程度非常高;patch之间的连接也能保证一定的光顺性,无需担心有限元单元之间出现的应力不连续、单元畸变,无需在后处理时特意处理单元之间的连接问题。

最后,结果高精度:我们知道有限元要想提高结果的精度,势必要加密网格(甚至重新划分网格),导致计算时长增加。而采用IGA单元,由于NURBS基函数具有天然的局部性和递推性,低阶次的单元可以很方便的构造高阶单元(通过插入节点、基函数升阶或者两者混合使用的方式),这就意味着IGA提高精度无需重新分割成子级patch,无需改变单元本身的形状,这也是“等几何分析”名称的由来。相比较有限元加密网格得到的的h-收敛,IGA通过采用高阶单元得到的p-收敛具有更高的精度。

计算流体动力学(CFD)

计算流体动力学(CFD)是近代流体动力学、数值数学和计算机科学结合的产物。它从计算方法出发,利用计算机快速的计算能力得到流体控制方程的近似解。随着计算机软硬件的猛速发展,CFD被广泛地应用于现在工程领域,特别是在制造领域,用以研究和优化设计流体流动的设备和系统的性能。然后随着近年来扫描技术和计算机技术的进步,CFD仿真技术为生物医学领域带来了全新的机遇。

人体解剖学和人体流体行为的复杂性,使得CFD仿真技术称为医学领域研究的重要工具。医学研究人员通过先进设备得到人体血液、气流等流体运作的详细数值,从而研究并设计出更可靠的医学医疗和设备,用以改进优化人体的流体运作,帮助病人更快的恢复健康。

CFD的示例应用之一是预测冠状动脉疾病,例如动脉粥样硬化,已知其由于生物力学和流体流动因素(例如流速和压力变化)而发生,CFD分析可以通过使用三维医学图像中的冠状动脉生成网格来执行转换成矢量格式,随后可以应用根据心动周期的诸如速度和压力信息的边界条件,并选择合适的粘度模型来模拟非牛顿流体,以求解流体流动方程并获得结果。可以观察到流体流动的壁剪切应力,速度和压力,以预测动脉粥样硬化的原因并确定最佳干预方法 。

曲线曲面的表示方法

曲线曲面表示:最重要的两种,隐式和参数表示

隐式表示和参数表示各有各的优缺点,利用参数表示形式,很容易生成曲线(或曲面)上的有序点列(网格点),易于绘制和操作,但判断给定点与曲线或曲面的位置关系比较困难;利用隐式表示形式则正好相反。

一般来说,一个成功的几何造型系统往往同时用到以上的两种技术,但是绝大多数CAD曲面均采用参数表示形式。

网格细化的目的:

三维模型的网格细化是基于网格离散曲面的一种表示方法,它可以从任意拓扑网格构造光滑曲面。

网格是有限元求解的基础,求解器的工作,就是把空间里连续的变量按照网格进行离散化。因此,从通常意义上讲,网格越细致,描述的变量就越精确。
基于任何有限元分析模型得到的精度都与所用的有限元网格直接相关。有限元网格用于将 CAD 模型分割为很多较小的域,我们称之为单元,然后在这些单元上求解一组方程,这些方程通过在每个单元上定义的一组多项式函数来近似表示所需的控制方程。随着网格的不断细化,这些单元变得越来越小,从而使求解的结果越来越接近真实解。
网格细化过程是我们验证有限元模型,并对软件、模型和计算结果建立信心的关键步骤。

三维网格细分算法

每次细分都是在每条边上插入一个新的顶点,可以看到随着细分次数的增加,折线逐渐变成一条光滑的曲线。曲面细分需要有几何规则和拓扑规则,几何规则用于计算新顶点的位置,拓扑规则用于确定新顶点的连接关系。如下图所示:
在这里插入图片描述

Catmull-Clark subdivision细分

Catmull-Clark细分是一种四边形网格的细分法则,每个面计算生成一个新的顶点,每条边计算生成一个新的顶点,同时每个原始顶点更新位置。下图为Catmull-Clark细分格式的细分掩膜,对于新增加的顶点位置以及原始顶点位置更新规则如下:

在这里插入图片描述

  1. 网格内部F-顶点位置:

设四边形的四个顶点为 v 0 、 v 1 、 v 2 、 v 3 v_0、v_1、v_2、v_3 v0v1v2v3,则新增加的顶点位置为 v = 1 / 4 ∗ ( v 0 + v 1 + v 2 + v 3 ) v = 1/4*(v_0 + v_1 + v_2 + v_3) v=1/4(v0+v1+v2+v3)

  1. 网格内部V-顶点位置:

设内部顶点v0的相邻点为 v 1 、 v 2 , … , v 2 n v_1、v_2,…,v_{2n} v1v2v2n,则该顶点更新后位置为 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aXpixjKY-1647767170897)(等几何分析.assets/778572-20160307165322772-1642245811.jpg)],其中 α , β , γ \alpha,\beta,\gamma α,β,γ分别为 α = 1 − β − γ \alpha= 1 - \beta - \gamma α=1βγ

  1. 网格边界V-顶点位置:

设边界顶点 v 0 v_0 v0的两个相邻点为 v 1 、 v 2 v_1、v_2 v1v2,则该顶点更新后位置为 v = 3 / 4 ∗ v 0 + 1 / 8 ∗ ( v 1 + v 2 ) v = 3/4*v_0 + 1/8*(v_1 + v_2) v=3/4v0+1/8(v1+v2)

  1. 网格内部E-顶点位置:

设内部边的两个端点为 v 0 、 v 1 v_0、v_1 v0v1,与该边相邻的两个四边形顶点分别为 v 0 、 v 1 、 v 2 、 v 3 v_0、v_1、v_2、v_3 v0v1v2v3 v 0 、 v 1 、 v 4 、 v 5 v_0、v_1、v_4、v_5 v0v1v4v5,则新增加的顶点位置为 v = 1 / 4 ∗ ( v 0 + v 1 + v f 1 + v f 2 ) = 3 / 8 ∗ ( v 0 + v 1 ) + 1 / 16 ∗ ( v 2 + v 3 + v 4 + v 5 ) v = 1/4*(v_0 + v_1 + v_f^1 + v_f^2) = 3/8*(v_0 + v_1) + 1/16*(v_2 + v_3 + v_4 + v_5) v=1/4(v0+v1+vf1+vf2)=3/8(v0+v1)+1/16(v2+v3+v4+v5)

  1. 网格边界E-顶点位置:

设边界边的两个端点为 v 0 、 v 1 v_0、v_1 v0v1,则新增加的顶点位置为 v = 1 / 2 ∗ ( v 0 + v 1 ) v = 1/2*(v_0 + v_1) v=1/2(v0+v1)

Loop细分

Loop细分是一种三角形网格的细分法则,它按照1-4三角形分裂,每条边计算生成一个新的顶点,同时每个原始顶点更新位置。下图为Loop细分格式的细分掩膜,对于新增加的顶点位置以及原始顶点位置更新规则如下:
在这里插入图片描述

  1. 网格内部V-顶点位置:

设内部顶点v0的相邻点为 v 1 、 v 2 , … , v n v_1、v_2,…,v_n v1v2vn,则该顶点更新后位置为[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qyOJuwS2-1647767325847)(等几何分析.assets/778572-20160307165221257-190078282.jpg)]
,其中[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wgqp4Ibf-1647767325847)(等几何分析.assets/778572-20160307165237241-1432841958.jpg)]

  1. 网格边界V-顶点位置:

设边界顶点 v 0 v_0 v0的两个相邻点为 v 1 、 v 2 v_1、v_2 v1v2,则该顶点更新后位置为 v = 3 / 4 ∗ v 0 + 1 / 8 ∗ ( v 1 + v 2 ) v = 3/4*v_0 + 1/8*(v_1 + v_2) v=3/4v0+1/8(v1+v2)

  1. 网格内部E-顶点位置:

设内部边的两个端点为 v 0 、 v 1 v_0、v_1 v0v1,相对的两个顶点为 v 2 、 v 3 v_2、v_3 v2v3,则新增加的顶点位置为 v = 3 / 8 ∗ ( v 0 + v 1 ) + 1 / 8 ∗ ( v 2 + v 3 ) v = 3/8*(v_0 + v_1) + 1/8*(v_2 + v_3) v=3/8(v0+v1)+1/8(v2+v3)

  1. 网格边界E-顶点位置:

设边界边的两个端点为 v 0 、 v 1 v_0、v_1 v0v1,则新增加的顶点位置为 v = 1 / 2 ∗ ( v 0 + v 1 ) v = 1/2*(v_0 + v_1) v=1/2(v0+v1)

等几何分析中的网格细化策略

等几何分析中的基本细化策略通常有三种:h-细化(基于节点插入),p-细化(基于基函数升阶)以及k-细化(基函数升阶和节点插入相结合)。等几何分析中的细化策略能够在保持计算机域几何表示不变的情况下,增加计算的自由度。

增加一个内部节点的重复度会减小在该节点的非零基函数的数目。如果该节点的重复度是k, 最多在该节点上有p - k + 1 个非基零函数,而且在该节点的基函数是 C p − k C^{p-k} Cpk连续的。

等几何分析中,p-细化是由升阶操作来完成的。在等几何分析中,单元边界处基函数是p- m i m_i mi次可微的( m i m_i mi为节点重复度),因此,当阶次p升高时,节点矢量中每个单独的节点值的重复度 m i m_i mi也必须同时提高,这样原始曲线单元连接处的连接性才能保持不变。

新的控制顶点数目取决于已存在节点的重复度。在升阶操作中,每个节点值的重复度加1,但没有新的节点值增加。

问题:基函数升阶中,控制顶点的个数按照什么规则来添加?应该加几个?基函数的个数与什么有关?

​ 在某点的基函数个数与次数n有关

​ 控制顶点添加的个数比直接插入节点添加的个数少一个(只升一阶的话)

​ 升阶过程中,新的控制顶点满足:(n次升阶为n+1次)
在这里插入图片描述
Q i = i n + 1 P i − 1 + ( 1 − i n + 1 P i ) , i = 0 , 1 , . . . , n + 1 , P − 1 = P n + 1 = 0 Q_i = \frac{i}{n+1}P_{i-1}+(1-\frac{i}{n+1}P_i),i=0,1,...,n+1,P_{-1} = P_{n+1}=0 Qi=n+1iPi1+(1n+1iPi),i=0,1,...,n+1,P1=Pn+1=0

k-细化策略:先在网格上采用升阶操作,然后在进行节点插入产生多个单元

流体力学中拉格朗日法和欧拉法有什么不同

拉格朗日法是随体法,跟随某个流体质点一起运动,了解该质点的各项参数随时间的变化情况,然后综合流场中的所有流体质点得到整个流场的流动情况。

欧拉分析法是局部法,研究流场中某一固定点的各项参数随时间的变化情况,然后综合流场中的所有的固定点得到整个流场的流动情况。

IGA(等几何分析)是指通过结合CAD(计算机辅助设计)和经典有限元方法,实现对非结构化几何形状的高效分析和模拟。传统的有限元方法中会将几何形状离散成网格,而IGA则通过NURBS(非均匀有理B样条)曲线和曲面来对几何形状进行建模和分析。 在IGA中,NURBS曲线和曲面被用来代表实际的工程结构或产品的几何形状。它可以通过控制顶点和权重来调整和控制形状的曲率和细节。与传统的有限元方法不同,IGA使用NURBS构建模型时,可以更加准确地描述复杂的几何形状,从而减少了离散误差。 IGA的主要目标是实现高精度和高效率的几何建模和分析。通过使用NURBS,IGA能够更好地处理曲线和曲面的几何信息,从而对复杂的几何形状进行精确的描述。与传统有限元方法相比,IGA需要的网格数量更少,从而减少了求解的自由度。这意味着在相同计算资源限制下,IGA可以提供更准确的结果。 IGA的代码实现可以通过在标准有限元分析软件中集成NURBS技术来实现。具体地,可以通过编程语言(如MATLAB或Python)将NURBS曲线和曲面的控制点和权重信息输入到有限元软件中,然后进行几何建模、网格划分和分析求解。 总之,IGA是一种通过结合CAD和经典有限元方法,通过NURBS曲线和曲面来精确描述复杂几何形状的分析方法。它能够提供高精度和高效率的几何分析,并可以通过对有限元软件进行代码实现来实现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值