B样条
什么是样条?
样条是通过一组指定点集而生成平滑曲线的柔性带。
什么是B样条?
B样条就相当于一个函数,这个函数在系数不同时就可以变化成各种曲线的形状。
B样条曲线
B e z i e r Bezier Bezier曲线的不足
-
n n n次 B e z i e r Bezier Bezier曲线: n + 1 n+1 n+1个控制点
x ( t ) = ∑ i = 0 n B i n ( t ) b i x(t)=\sum_{i=0}^nB_i^n(t)b_i x(t)=∑i=0nBin(t)bi
全局性:牵一发而动全身,不利于设计
原因:基函数是全局的
样条曲线
- 分段的多项式曲线(
B
e
z
i
e
r
Bezier
Bezier曲线)
- 分段表达,具有局部性
样条曲线的统一表达:
-
形式类比:每个控制顶点用一个基函数进行组合
x ( t ) = ∑ i = 0 n N i , k ( t ) d i x(t)=\sum_{i=0}^nN_{i,k}(t)d_i x(t)=∑i=0nNi,k(t)di
-
性质要求:
- 基函数须局部性(局部支集) 移动某一段控制点的位置只会影响该段曲线的形状,其他段的曲线不受影响。
- 基函数要有正性+权性
- . . . ... ...
B样条的产生
启发:
-
B e r n s t e i n Bernstein Bernstein基函数的递推公式:
B i n ( t ) = ( 1 − t ) B i ( n − 1 ) ( t ) + t B i − 1 ( n − 1 ) ( t ) B_i^n(t)=(1-t)B_i^{(n-1)}(t)+tB_{i-1}^{(n-1)}(t) Bin(t)=(1−t)Bi(n−1)(t)+tBi−1(n−1)(t),其中** B 0 0 ( t ) = 1 , B i n ( t ) = 0 若 i ∉ { 0 , . . . , n } B_0^0(t)=1,B_i^n(t)=0若i\notin\{0,...,n\} B00(t)=1,Bin(t)=0若i∈/{0,...,n}**
-
思路:
- 局部处处类似定义,由一个基函数平移得到
- 高阶的基函数由2个低阶的基函数"升阶"得到
- 利于保持一些良好的性质,比如提高光滑性
关键思想:
- 以三次为例
- 我们定义一个基函数 b ( t ) b(t) b(t)
- 特性:
- b ( t ) b(t) b(t)是 C 2 C^2 C2连续
- b ( t ) b(t) b(t)是分段多项式,3次
- b ( t ) b(t) b(t)具有局部支持特性
- 重复平移 b ( t + i ) b(t+i) b(t+i)形成一个统一的分区
- b ( t ) ≥ 0 b(t)≥0 b(t)≥0,对于所有的 t t t
B样条曲线的每个控制节点都有一个节点参数:节点向量
k
k
k阶均匀B样条基函数被定义为:
N
i
0
(
t
)
=
{
1
,
i
≤
t
<
i
+
1
0
,
其
他
N_i^0(t)=\begin{cases} 1,i≤t<i+1\\ 0,其他 \end{cases}
Ni0(t)={1,i≤t<i+10,其他
B样条的优势
- 保留了 B e z i e r Bezier Bezier曲线的优势
- 可局部修改,调整某一控制点的时候,不会影响到整条曲线。
- 控制多边形与曲线的逼近程度较好
- 曲线拼接时比 B e z i e r Bezier Bezier方便
B样条曲线
一般表达:
有
n
+
1
n+1
n+1个控制点
P
i
(
i
=
0
,
1
,
.
.
.
,
n
)
P_i(i=0,1,...,n)
Pi(i=0,1,...,n)和一个节点向量
T
=
{
t
0
,
t
1
,
.
.
.
,
t
m
}
T=\{t_0,t_1,...,t_m\}
T={t0,t1,...,tm},依次连接这些控制点可以构成一个特征多边形,
k
+
1
k+1
k+1阶(
k
k
k次)B样条的表达式如下所示,而且
2
≤
k
≤
n
+
1
2≤k≤n+1
2≤k≤n+1,必须满足
m
=
n
+
k
+
1
m=n+k+1
m=n+k+1,一般情况下
t
0
=
0
,
t
m
=
1
t_0=0,t_m=1
t0=0,tm=1。所以定义域是闭区间[0,1]
P
(
t
)
=
∑
i
=
0
n
P
i
F
i
k
(
t
)
t
∈
[
t
k
−
1
,
t
n
+
1
]
P(t)=\sum_{i=0}^nP^iF_{i}^{k}(t)\ \ t\in[t_{k-1},t_{n+1}]
P(t)=i=0∑nPiFik(t) t∈[tk−1,tn+1]
其中
F
i
k
(
t
)
F_i^k(t)
Fik(t)是k次B样条基函数,
k
k
k表示基函数的次数,公认的是
d
e
B
o
o
r
−
C
o
x
de Boor-Cox
deBoor−Cox递推定义。其内容简单来说是由0次构造1次,由1次构造2次,由2次构造3次,以此类推。
递推定义:
{
F
i
0
(
t
)
=
{
1
,
t
i
≤
t
≤
t
i
+
1
0
,
其
他
F
i
k
(
t
)
=
t
−
t
i
t
i
+
k
−
t
i
F
i
k
−
1
(
t
)
+
t
i
+
k
+
1
−
t
t
i
+
k
+
1
−
t
i
+
1
F
i
+
1
k
−
1
(
t
)
约
定
0
0
=
0
\begin{cases} F_{i}^{0}(t)=\begin{cases} 1,t_i≤t≤t_{i+1}\\ 0,其他\\ \end{cases}\\ F_{i}^{k}(t)=\frac{t-t_i}{t_{i+k}-t_i}F_{i}^{k-1}(t)+\frac{t_{i+k+1}-t}{t_{i+k+1}-t_{i+1}}F_{i+1}^{k-1}(t)\\ \\约定\frac{0}{0}=0 \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧Fi0(t)={1,ti≤t≤ti+10,其他Fik(t)=ti+k−tit−tiFik−1(t)+ti+k+1−ti+1ti+k+1−tFi+1k−1(t)约定00=0
零次B样条
一次B样条
二次B样条
三次B样条
B样条的曲线递推图像
B样条的定义
为了理解 p > 0 p>0 p>0时计算 N i , p ( u ) N_{i,p}(u) Ni,p(u)的方法( p p p为次数),我们使用三角计算格式。所有节点区间在左边第一列,所有零次基函数在第二列。见下图:
为了计算 N i , 1 N_{i,1} Ni,1,需要 N i , 0 ( u ) 和 N i + 1 , 0 ( u ) N_{i,0}(u)和N_{i+1,0}(u) Ni,0(u)和Ni+1,0(u)。因此,我们可以计算 N 0 , 1 ( u ) , N 1 , 1 ( u ) , N 2 , 1 ( u ) N_{0,1}(u),N_{1,1}(u),N_{2,1}(u) N0,1(u),N1,1(u),N2,1(u)等等。所有这些 N i , 1 ( u ) N_{i,1}(u) Ni,1(u)写在第三列。一旦所有 N i , 1 ( u ) N_{i,1}(u) Ni,1(u)计算完毕,我们可以计算 N i , 2 ( u ) N_{i,2}(u) Ni,2(u)并将其放在第四列。继续这个过程直到所有需要的 N i , p ( u ) N_{i,p}(u) Ni,p(u)计算完毕。
因为 N i , 1 ( u ) N_{i,1}(u) Ni,1(u)是从 N i , 0 ( u ) N_{i,0}(u) Ni,0(u)和 N i + 1 , 0 ( u ) N_{i+1,0}(u) Ni+1,0(u)计算的,因此可以得出 N i , 1 ( u ) N_{i,1}(u) Ni,1(u)在 [ u i , u i + 2 ) [u_i,u_{i+2}) [ui,ui+2)上是非零的。
由上图得出结论:基函数 N i , p ( u ) N_{i,p}(u) Ni,p(u)在[ u i , u i + p + 1 u_i,u_{i+p+1} ui,ui+p+1)上非零
由上图可得出:在任何一个节点区间 [ u i , u i + 1 ) [u_i,u_{i+1}) [ui,ui+1),最多有 p + 1 p+1 p+1个 p p p次基函数非零,即 N i − p , p ( u ) , N i − p + 1 , p ( u ) , N i − p + 2 , p ( u ) , . . . , N i − 1 , p ( u ) N_{i-p,p}(u),N_{i-p+1,p}(u),N_{i-p+2,p}(u),...,N_{i-1,p}(u) Ni−p,p(u),Ni−p+1,p(u),Ni−p+2,p(u),...,Ni−1,p(u)和 N i , p ( u ) N_{i,p}(u) Ni,p(u)
B样条基函数的主要性质
1. 局部支撑性:
B i , k ( u ) = { ≥ 0 u ∈ [ u i , u i + k + 1 ] = 0 o t h e r w i s e B_{i,k}(u)=\begin{cases} ≥0\ \ \ u\in[u_i,u_{i+k+1}]\\ =0\ \ \ otherwise \end{cases} Bi,k(u)={≥0 u∈[ui,ui+k+1]=0 otherwise
而 B e z i e r Bezier Bezier在整个区间非0。反过来,对每一个区间 ( u i , u i + k + 1 ) (u_i,u_{i+k+1}) (ui,ui+k+1)上最多有 k + 1 k+1 k+1个基函数在其上非零
2. 权性:
∑ i = 0 n B i , k ( u ) = 1 u ∈ [ u k , u n + 1 ] \sum_{i=0}^nB_{i,k}(u)=1\ \ \ u\in[u_{k},u_{n+1}] i=0∑nBi,k(u)=1 u∈[uk,un+1]
3. 连续性:
B i , k ( u ) B_{i,k}(u) Bi,k(u)在 r r r重节点处的连续阶不低于 k − 1 − r k-1-r k−1−r
4. 分段参数多项式:
B i , k ( u ) B_{i,k}(u) Bi,k(u)在每个长度非零的区间 [ u i . u i + 1 ) [u_i.u_{i+1}) [ui.ui+1)上都是次数不高于 k − 1 k-1 k−1的多项式,它在整个参数轴上是分段多项式
B样条函数的主要性质
1.局部性:
k k k阶B样条曲线上的一点至多与 k k k个控制顶点有关,与其它控制顶点无关
移动曲线的第 i i i个控制顶点 P i P_i Pi,至多影响到定义在区间上那部分曲线的形状,对曲线其余部分不发生影响
2.变差缩减性:
平面内 n + 1 n+1 n+1个控制顶点构成B样条曲线 P ( t ) P(t) P(t)的特征多边形。在该平面内的任意一条直线与 P ( t ) P(t) P(t)的交点个数不多于该直线和特征多边形的交点个数
3. 几何不变性:
B样条曲线的形状和位置与坐标系的选择无关
4.凸包性:
B样条曲线落在 P i P_i Pi构成的凸包之中。其凸包区域小于或等于同一组控制顶点定义的 B e z i e r Bezier Bezier曲线凸包区域
凸包就是包含上边这6个顶点的最小凸多边形。凸多边形是把多边形的每条边延长,其它边都在它的同一侧
该性质导致顺序 k + 1 k+1 k+1个顶点重合时,由这些顶点定义的k次B样条曲线段退化到这一个重合点;顺序 k + 1 k+1 k+1个顶点共线时,由这些顶点定义的k次B样条曲线为一直线段
B样条曲线类型的划分
1. 均匀B样条曲线
当节点沿参数轴均匀等距分布,即 u i + 1 − u i = 常 数 > 0 u_{i+1}-u_i=常数>0 ui+1−ui=常数>0时,表示均匀B样条函数
如: { 0 , 1 , 2 , 3 , 4 , 5 , 6 } \{0,1,2,3,4,5,6\} {0,1,2,3,4,5,6}
均匀B样条的基函数呈周期性。即给定n和k,所有的基函数有相同形状。每个后续基函数仅仅是前面基函数在新位置上的重复:
B
i
,
k
(
u
)
=
B
i
+
1
,
k
(
u
+
Δ
u
)
=
B
i
+
2
,
k
(
u
+
2
Δ
u
)
B_{i,k}(u)=B_{i+1,k}(u+\Delta u)=B_{i+2,k}(u+2\Delta u)
Bi,k(u)=Bi+1,k(u+Δu)=Bi+2,k(u+2Δu)
其中,
Δ
u
\Delta u
Δu为相邻节点值的间距
均匀B样条曲线没有保留 B e z i e r Bezier Bezier曲线端点的几何性质,即不过控制点中的起点和终点,采用准均匀的B样条曲线则能够通过。
2. 准均匀B样条曲线
与均匀B样条曲线的差别在于两端节点具有重复度k,这样的节点矢量定义了准均匀的B样条函数
均匀: u = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } u=\{0,1,2,3,4,5,6\} u={0,1,2,3,4,5,6}
准均匀: { 0 , 0 , 0 , 1 , 2 , 3 , 4 , 5 , 5 , 5 } \{0,0,0,1,2,3,4,5,5,5\} {0,0,0,1,2,3,4,5,5,5}
3. 分段 B e i z e r Beizer Beizer曲线
节点矢量中两端节点具有重复度k,所有内节点重复度为k-1,这样的节点矢量定义了分段的 B e r n s t e i n Bernstein Bernstein基
B样条曲线用分段 B e z i e r Bezier Bezier曲线表示后,各曲线段就具有了相对的独立性
4. 非均匀B样条曲线
当节点沿参数轴的分布不等距,即 u i + 1 − u i ≠ 常 数 时 u_{i+1}-u_i≠常数时 ui+1−ui=常数时,表示非均匀B样条函数
B样条曲面
B样条曲面方程为:
p
(
u
,
v
)
=
∑
i
=
0
m
∑
j
=
0
n
d
i
j
N
i
,
k
(
u
)
N
j
,
l
(
v
)
p(u,v)=\sum_{i=0}^m\sum_{j=0}^nd_{ij}N_{i,k}(u)N_{j,l}(v)
p(u,v)=i=0∑mj=0∑ndijNi,k(u)Nj,l(v)
其中
u
k
≤
u
≤
u
m
+
1
,
v
i
≤
v
≤
v
n
+
1
u_k≤u≤u_{m+1},v_i≤v≤v_{n+1}
uk≤u≤um+1,vi≤v≤vn+1,B样条基函数
N
i
,
k
(
u
)
(
i
=
0
,
1
,
.
.
.
,
m
)
N_{i,k}(u)(i=0,1,...,m)
Ni,k(u)(i=0,1,...,m)与
N
j
,
l
(
v
)
(
j
=
0
,
1
,
.
.
.
,
n
)
N_{j,l}(v)(j=0,1,...,n)
Nj,l(v)(j=0,1,...,n)分别由节点矢量
U
和
V
U和V
U和V按
d
e
B
o
o
r
−
c
o
x
deBoor-cox
deBoor−cox递推公式计算,
d
i
,
j
d_{i,j}
di,j构成一张控制网格,称为B样条曲面的特征网格
最终实现的结果为:
其中节点向量通过哈特利-贾德方法获得。
困惑点:使用Hartley-Judd(哈特利-贾德)方法获得节点向量没有看明白