图像识别
林ch
这个作者很懒,什么都没留下…
展开
-
VGGNet图像识别与tensorflow实现
1. 引言 随着卷积神经网络CNN在图像任务上不断取得的进展,很多学者对CNN的各个因素进行了探讨和改进,以进一步提高CNN在计算机视觉中的任务,比如CNN的卷积核大小、步伐等,在本文,我们将介绍一个非常经典的CNN模型——VGGNet,这个模型是在2014年由Karen Simonyan等人提出来的,在论文中,作者主要研究的是在控制其他变量不变的情况下,逐渐增加CNN的层数,是否可以对C...原创 2019-03-06 12:03:11 · 880 阅读 · 0 评论 -
ResNet图像识别与tensorflow实现
1. 引言 前面我们介绍了VGGNet在图像识别中的应用,在VGGNet中,作者提出随着CNN网络层数的加深,模型的效果会进一步得到提升,但是在这篇论文提出来之后,有学者发现,随着层数的加深,当深度达到一定数值之后,模型的准确率不仅没有提升,反而下降了,如图所示: 最开始有学者以为是梯度消失或爆炸的问题导致的,但是这个问题可以被Batch Normalization解决,并且加了...原创 2019-03-11 18:31:46 · 11649 阅读 · 4 评论 -
Res2Net模块介绍与tensorflow实现
1. 引言 在很多计算机视觉任务中,由于同一张图像中的物体往往会有不一样的尺寸,因此,我们经常需要提取图像中不同尺度的特征来提高模型的效果,在以往的经验中,我们知道可以通过堆叠不同的CNN层、采用不同size的卷积核、残差连接等来实现。在本文中,我们将介绍一种更加细粒度的方法——Res2Net,该方法是2019年由程明明等人提出来的一种新模块,通过简单修改ResNet中的Bottlenec...原创 2019-04-22 20:22:15 · 3599 阅读 · 5 评论