命名实体识别
林ch
这个作者很懒,什么都没留下…
展开
-
BILSTM-CRF原理介绍与tensorflow实现
1. 引言 在自然语言处理中,很多任务都涉及到序列标注,比如词性标注、分词、命名实体识别等,这些任务都有一个特点是输入序列和标签序列是等长的,因此,常用的解决方法有HMM、MEMM、CRF等,本文将介绍一个2015年提出来的非常经典模型,即BILSTM-CRF模型,该模型现在已经成为命名实体识别、词性标注、分词等任务的主流模型。论文地址:《Bidirectional LSTM-CRF ...原创 2019-06-25 20:21:23 · 9389 阅读 · 1 评论 -
CSE命名实体识别
1. 引言前面介绍了Bilstm-CRF和NCRF++模型用于命名实体识别,但是这两个模型都是基于标注语料进行训练,由于标注语料一般都比较少,而且标注成本很高,因此,一般训练出来的模型泛化性会相对比较差。近两年,很多模型开始通过在大量未标注的语料上训练语言模型,然后通过Fine-tuning或者Feature-base的形式将训练好的模型迁移到具体的NLP任务中,很好地提高了模型的泛化能力,这里...原创 2019-07-31 10:43:56 · 694 阅读 · 0 评论