说说Halcon的形状匹配和灰度匹配

本文详细介绍了Halcon软件中形状匹配和灰度匹配的特点及应用场合,并对比了这两种匹配方式的优缺点。同时,还提供了匹配算子参数的设定指南,帮助读者更好地理解和使用Halcon进行工业视觉检测。

本人用Halcon差不多有10年了,从当时的Halcon8用到现在的Halcon20,大大小小的很多的工业视觉应用场景都经历过,主要有两类:
第一类:运动控制类设备,如激光焊接和雕刻,丝印机,贴片机,数控机床等自动化设备,视觉就是模板匹配,先做好Mark点,然后在生产中快速进行形状或者灰度模板匹配,定位产品的位置,最后进行焊接或者贴合的工艺动作。这种设备量产最多,市场同行之间竞争很激烈,基本上是标准机,对模板匹配的速度和精度都有很高的要求,一台机器里往往有几个相机和十几个轴,对成本控制的非常严格。
第二类:AOI检测设备,如检孔机、PCB和手机玻璃外观检测,目前很多是非标机,根据客户要求来订制光源镜头相机,视觉功力要深厚些,基本上是先定位,再检测。定位用到的很多是形状或者灰度匹配。
说到这里,回到本文的主题,到底形状和灰度有什么差别或者优缺点呢?Halcon的算子的参数怎么设定呢?可以分别应用在什么场合呢?市场上商用的其他工业软件库品牌收费和特点怎样呢?
推荐看看中国的Malcon跟德国的Halcon的相比的优缺点
https://blog.csdn.net/lindrs/article/details/114113280

模板匹配特点:
形状匹配,find_shape_model,顾名思义,就是用产品的形状来做匹配,或者说是产品边缘来做匹配,Halcon的形状匹配可以做到即使存在严重遮挡、混乱或非线性光照变化,也能实现极高的识别率;
灰度匹配,find_ncc_model,就是框什么就识别什么,不仅识别产品的边缘,也识别产品本身的内部的信息,即使存在线性均匀的光照变化,也能识别,非线性的光照变化的话,识别不了,出来的分数很低,有个相似度的公式,比较复杂,这里就不做说明,感兴趣可以网上搜索下,很多资料。

优缺点和应用场合分析:
形状匹配:Halcon的识别算法有个公式,在其帮助文档里,大概原理是在做产品模板时候提取每个边缘点的XY方向信息和梯度值,然后在生产时,先计算搜索图的每一个点的XY方向信息和梯度值,在每一个点的位置上,循环

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值