- 博客(139)
- 资源 (9)
- 收藏
- 关注
原创 使用opencv+python 实现图像的斜向矫正
在处理现实生活中的图像处理问题时,我们经常会遇到一种情况-即我们将要处理的目标的位置是斜的,我们需要使用仿射变换进行矫正。当你做了很多现实场景中的案例之后,你就会发现这是一个非常通用的模块,因而本篇博客针对这个问题进行了详细的论述,具体的案例如下图所示,左边表示的是原始的输入图片,该图片中的目标是斜放的,我们要做的任务就是将其矫正过来。
2025-04-14 09:11:52
535
原创 linux 下tensorrt的yolov8的前向推理(python 版本)的实现
linux 下tensorrt的yolov8的前向推理(python 版本)的实现
2025-01-21 17:18:02
954
原创 图像超分辨率重建
一、什么是图像超分辨图像超分辨是一种技术,旨在通过硬件或软件的方法提高原有图像的分辨率。这一过程涉及从一系列低分辨率的图像中获取一幅高分辨率的图像,实现了时间分辨率向空间分辨率的转换。超分辨率重建的核心思想是利用多帧图像序列的时间带宽来换取空间分辨率的提升。这项技术在多个电子图像应用领域中具有重要意义,如和中的等,其中高分辨率图像能够提供更多的细节,对于做出正确的诊断或提高识别性能至关重要。12此外,图像超分辨率重建还包括其他技术,如基于重建的方法和基于学习的方法。
2024-06-20 11:22:56
2206
原创 face landmarks
以下图像除了第七张图像,能够得到结果,其它的图像均无结果,该方法对侧面脸的检测效果不好。设置特征检测器,dlib有已经训练的好的需要下载,也可以自己根据需要训练。
2024-06-11 16:56:02
654
原创 基于halcon的图像的尺度形状模型匹配
图像的匹配指寻找两幅影像中相似的部分(基于特征点或灰度等),从而找到与搜索图像相似的图像。配准:将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程.
2024-02-28 10:16:00
782
原创 基于梯度和频率域的深度超分辨率新方法笔记二
简单的理解就是每一个样本经过模型后会得到一个预测值,然后得到的预测值和真实值的差值就成为损失(当然损失值越小证明模型越是成功),我们知道有许多不同种类的损失函数,这些函数本质上就是计算预测值和真实值的差距的一类型函数,然后经过库(如pytorch,tensorflow等)的封装形成了有具体名字的函数。
2023-12-29 10:53:17
1422
原创 傅里叶变换在图像中的应用
1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声;边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;
2023-12-08 13:43:06
1797
1
原创 离散傅里叶变换和快速傅里叶变换
在时间连续域中,信号一般用带有时间变量的函数表示,系统则用微分方程表示。在频域中,则使用傅里叶变换或拉普拉斯变换表示。在时间离散域中,信号一般用序列表示,系统则用差分方程表示。在频域中,则使用序列的傅里叶变换或Z变换表示。时间连续模拟信号的傅里叶变换会得到连续的频域信号。那么时间离散信号(序列)的傅里叶变换呢?作用:计算机实现傅里叶变换的方法参考博文的链接:离散傅里叶变换(DFT)及快速傅里叶变换(FFT) - 知乎 (zhihu.com)傅里叶变换的公式为:真实世界是连续的,可是计算机永远只能描述离散的
2023-12-08 10:45:46
1581
原创 傅里叶变换的作用
同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation)
2023-12-07 08:50:04
396
原创 HALCON的python下的使用方法(直接开发,不需要调用.hdev文件)
halcon的相关dll可以在你安装的halcon的文件位置获得。拷贝以下命名的dll,进行拷贝,放置在创建的python环境中python.exe所在的位置。对于负责功能基于halcon的实现,编程方法和在halcon中的不太一样,需要将输出的结果写在功能函数的前面。2)然后查看自己的halcon的版本,在该环境下安装halcon。如图所示,版本是20110,执行以下语句,完成halcon的安装。5)opencv和halcon基于python的图像转换的方法。6)复杂功能的实现,测量功能的实现方法。
2023-11-10 16:23:36
3501
6
原创 ROS下写服务
参考链接: [ROS学习]ROS服务浅析及简单实现(C++)_c++ ros 服务_Haley__xu的博客-CSDN博客如果没有工作空间,可以先创建一个工作空间,创建工作空间的步骤为:在该工作空间下创建功能包,包名命名为: haley_service创建所需的自定义服务消息(srv),这里我们定义一个求和的srv,在sum.srv中写入消息的格式。 sum.srv的内容如下,这里的上半部分是请求数据格式,下半部分是应答的数据格式。中间必须用三个短线隔开。 现在来查看一下我们的srv消息吧(a)编译工作空
2023-06-19 10:53:08
1253
原创 VINS_FUSION的EVO评价
extrinsic_parameter.csv 当没有imu和相机没有确切的举证的关系的时候,程序中分为粗估计和细估计。得到旋转矩阵和平移矩阵。原本算法是可以保存VIO数据的,保存的路径在yaml配置文件中;因此需要对源代码就行修改,更改保存轨迹的格式。vio.csv //vio的轨迹的存储。,然后根据需要可以选择性安装。二、算法精度评价工具EVO。不装也不会影响基本功能。,首先确保系统安装了。输出的轨迹格式不符合。
2023-05-09 08:56:42
784
原创 docker的卸载和安装及使用
7)VERSION_STRING=5:20.10.13~3-0~ubuntu-jammy(替换成你自己可以安装的版本)7)验证是否正确:sudo docker run hello-world。8)验证 sudo docker run hello-world。
2023-05-06 11:27:57
1689
1
原创 激光和相机的标定---手动标定的方法
这是Livox提供的手动校准Livox雷达和相机之间外参的方法,并在Mid-40,Horizon和Tele-15上进行了验证。其中包含了计算相机内参,获得标定数据,优化计算外参和雷达相机融合应用相关的代码。本方案中使用了标定板角点作为标定目标物,由于Livox雷达非重复性扫描的特点,点云的密度较大,比较易于找到雷达点云中角点的准确位置。相机雷达的标定和融合也可以得到不错的结果。
2023-04-17 11:10:07
3438
2
osnet-x系列模型
2022-11-15
jetson-inference完成的源码
2022-11-08
支持yoloX的各种方式的部署
2022-11-08
nx上编译成功的ncnn,可以适配在虚拟机和ARM核心板上
2022-11-01
NX+Ubuntu18.04+ROS Realsense(RealSenseD435i )的安装与使用
2022-06-21
版本为ceres-solver-1.13.0,对应的是ros-melodic的环境,激光--cartographer中使用
2022-05-31
c++版本的基于Yolov5的deepsort的实现
2022-11-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人