吴恩达深度学习云课堂
文章平均质量分 96
ling00007
这个作者很懒,什么都没留下…
展开
-
Part 1 (一)深度学习概论
1.1 什么是神经网络Ex.1 Single neural network用房子面积房子价格预测 我们用一条直线去模拟价格与房子大小的映射关系,这样的拟合函数可看作简单的神经网络。 我们知道Relu(修正线性单元)函数经常出现在文献里,在这里创造的函数就是Relu函数,它永远不会为负数,所以是零开始。神经元 对于这个神经元,输入的是房子的大小(x),输出的是价格(y)...原创 2018-01-23 20:40:07 · 222 阅读 · 0 评论 -
Part 1(二)神经网络基础
引入:这课学的是神经网络编程的基础知识,构建神经网络的时候一些技巧尤为重要,比如训练每个样本,我们需要一些技巧,实际上我们并不需要像以往那样用for遍历每个样本,在接下来的内容里我们将学习到这些技巧。 还有在计算过程中,通常有一个正向传播过程,与之对应的就会有一个反向的传播步骤,我们在接下来的学习中将会了解到为什么神经网络的计算可以有想正向传播和反向传播。 用logistic回归来阐述。...原创 2018-01-24 15:36:06 · 293 阅读 · 0 评论 -
Part 1(三)浅层神经网络
接下来我们将学习如何实现一个神经网络3.1 神经网络概览概览我们输入x和参数w,b,计算出z,然后得到a(同时输出y hat),最后可以计算损失函数L。 可以把很多sigmoid单元堆叠成一个神经网络。 神经网络的表示方括号是表示第几层的数据,输入层是第0层,不把输入层看作标准层,因此下图是两层的 神经网络的计算上标表示第几层,下标表示该层中的第几...原创 2018-01-25 23:49:07 · 330 阅读 · 0 评论 -
Part 1(四)深层神经网络
4.1 深层神经网络我们说logistic回归是一个浅层模型,当我们数一个网络有多少层的时候,我们不用数输入层,只需要数隐藏层的数量。 4.2 深层网络中的前向传播用一个for循环去遍历所有层 的计算也是可以的; n[1]=5表示第一层的神经元个数是5。 4.3 核对矩阵的维数实现深度神经网络的时候,一个比较好的检查代码错误的方法是计算矩阵的维数。 例子...原创 2018-01-27 21:56:06 · 227 阅读 · 0 评论 -
Part 2 (三)超参数调试、batch正则化、程序框架
这部分会有讲到tensorflow,网上看到些教程,先收着: https://www.jianshu.com/p/e112012a4b2d改善深层神经网络:超参数调试、正则化以及优化 —超参数调试 和 Batch Norm1. 超参数调试处理在机器学习领域,超参数比较少的情况下,我们之前利用设置网格点的方式来调试超参数; 但在深度学习领域,超参数较多的情况下,不是设置规则的...原创 2018-03-06 21:42:40 · 298 阅读 · 0 评论 -
Part 1 练习:建立一个训练网络,判断是否为猫图
import numpy as npimport matplotlib.pyplot as pltimport h5pyimport scipyfrom PIL import Imagefrom scipy import ndimagefrom lr_utils import load_datasetdef initialize_parameters(n_x, n_h, n_y):...原创 2018-02-27 19:30:14 · 505 阅读 · 0 评论 -
Part 2 (一)深度学习的实用层面
记一些的链接,方便查找作业笔记 https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes https://github.com/Kulbear/deep-learning-coursera http://blog.csdn.net/koala_tree改善深层神经网络:超参数调试、正则化以及优化 —深度学习的实践方面1. 训...原创 2018-03-01 11:13:02 · 739 阅读 · 0 评论 -
Part 2 (二)优化算法
改善深层神经网络:超参数调试、正则化以及优化 —优化算法1. Mini-batch 梯度下降法对整个训练集进行梯度下降法的时候,我们必须处理整个训练数据集,然后才能进行一步梯度下降,即每一步梯度下降法需要对整个训练集进行一次处理,如果训练数据集很大的时候,如有500万或5000万的训练数据,处理速度就会比较慢。但是如果每次处理训练数据的一部分即进行梯度下降法,则我们的算法速度会执行...原创 2018-03-02 16:23:16 · 336 阅读 · 0 评论