Part 2 (一)深度学习的实用层面

记一些的链接,方便查找作业笔记
https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes
https://github.com/Kulbear/deep-learning-coursera
http://blog.csdn.net/koala_tree

改善深层神经网络:超参数调试、正则化以及优化 —深度学习的实践方面

1. 训练、验证、测试集

对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分:

训练集(train set):用训练集对算法或模型进行训练过程;

验证集(development set):利用验证集或者又称为简单交叉验证集(hold-out cross validation set)进行交叉验证,选择出最好的模型;

测试集(test set):最后利用测试集对模型进行测试,获取模型运行的无偏估计。

小数据时代

在小数据量的时代,如:100、1000、10000的数据量大小,可以将data做以下划分:

无验证集的情况:70% / 30%;
有验证集的情况:60% / 20% / 20%;
通常在小数据量时代,以上比例的划分是非常合理的。

大数据时代

但是在如今的大数据时代,对于一个问题,我们拥有的data的数量可能是百万级别的,所以验证集和测试集所占的比重会趋向于变得更小。

验证集的目的是为了验证不同的算法哪种更加有效,所以验证集只要足够大能够验证大约2-10种算法哪种更好就足够了,不需要使用20%的数据作为验证集。如百万数据中抽取1万的数据作为验证集就可以了。

测试集的主要目的是评估模型的效果,如在单个分类器中,往往在百万级别的数据中,我们选择其中1000条数据足以评估单个模型的效果。

100万数据量:98% / 1% / 1%;
超百万数据量:99.5% / 0.25% / 0.25%(或者99.5% / 0.4% / 0.1%)
Notation

建议验证集要和训练集来自于同一个分布,可以使得机器学习算法变得更快;
如果不需要用无偏估计来评估模型的性能,则可以不需要测试集。

2. 偏差、方差

对于下图中两个类别分类边界的分割:
这里写图片描述
从图中我们可以看出,在欠拟合(underfitting)的情况下,出现高偏差(high bias)的情况;在过拟合(overfitting)的情况下,出现高方差(high variance)的情况。

在bias-variance tradeoff 的角度来讲,我们利用训练集对模型进行训练就是为了使得模型在train集上使 bias 最小化,避免出现underfitting的情况;

但是如果模型设置的太复杂,虽然在train集上 bias 的值非常小,模型甚至可以将所有的数据点正确分类,但是当将训练好的模型应用在dev 集上的时候,却出现了较高的错误率。这是因为模型设置的太复杂则没有排除一些train集数据中的噪声,使得模型出现overfitting的情况,在dev 集上出现高 variance 的现象。

所以对于bias和variance的权衡问题,对于模型来说是一个十分重要的问题。

例子:

几种不同的情况:

这里写图片描述
第一种:
训练集错误率是1%,验证集的错误率11%,可以看出训练集设置的非常好,验证集的效果明显有偏差,这可能是过度拟合测试样本的结果。某种程度上来说,验证集并没有充分利用交叉验证集的作用。像这种情况,我们呢称之为“高方差”。所以通过训练集和验证集的误差我们可以诊断算法是否具有高方差。
第二种:明显分类的效果不好,这就是数据欠拟合,我们说这个算法的偏差较高。相反,验证集的效果却是比较合理,错误率只比训练集多1%。
第三种:训练集的错误率是15%,偏差相对比较高,但是验证集的评估结果更加差,这种情况,我们说算法的偏差高,方差也高。
第四种:训练集的错误率是0.5%,验证集的错误率是1%,这是比较理想的情况。

以上为在人眼判别误差在0%的情况下,该最优误差通常也称为“贝叶斯误差”,如果“贝叶斯误差”大约为15%,那么图中第二种情况就是一种比较好的情况。

High bias and high variance的情况

上图中第三种bias和variance的情况出现的可能如下:
这里写图片描述
紫色的那条线只是一条直线,没有找到边界线,但却在部分数据点上出现了过拟合,则会导致这种高偏差和高方差的情况。

虽然在这里二维的情况下可能看起来较为奇怪,出现的可能性比较低;但是在高维的情况下,出现这种情况就成为可能。

3. 机器学习的基本方法

在训练机器学习模型的过程中,解决High bias 和High variance 的过程:
这里写图片描述
1.是否存在High bias ?
增加网络结构,如增加隐藏层数目;
训练更长时间;
寻找合适的网络架构,使用更大的NN结构;
2.是否存在High variance?
获取更多的数据;
正则化( regularization);
寻找合适的网络结构;
在大数据时代,深度学习对监督式学习大有裨益,使得我们不用像以前一样太过关注如何平衡偏差和方差的权衡问题,通过以上方法可以使得再不增加另一方的情况下减少一方的值。

4. 正则化(regularization)

正则化可以避免过拟合问题,利用正则化来解决High variance 的问题,正则化是在 Cost function 中加入一项正则化项,惩罚模型的复杂度。

Logistic regression

这里写图片描述

其中λ为正则化因子。

注意:lambda在python中属于保留字,所以在编程的时候,用“lambd”代表这里的正则化因子λ。

Neural network

加入正则化项的代价函数:
这里写图片描述

Weight decay(权重衰减)

在加入正则化项后,梯度变为:
这里写图片描述
则梯度更新公式变为:

这里写图片描述
这里写图片描述

5. 为什么正则化可以减小过拟合

假设下图的神经网络结构属于过拟合状态:
这里写图片描述
对于神经网络的Cost function:
这里写图片描述
加入正则化项,直观上理解,正则化因子λ设置的足够大的情况下,为了使代价函数最小化,权重矩阵W就会被设置为接近于0的值。则相当于消除了很多神经元的影响,那么图中的大的神经网络就会变成一个较小的网络。

当然上面这种解释是一种直观上的理解,但是实际上隐藏层的神经元依然存在,但是他们的影响变小了,便不会导致过拟合。

数学解释:

假设神经元中使用的激活函数为g(z)=tanh(z),在加入正则化项后:
这里写图片描述
当λ增大,导致 W[l] W [ l ] 减小, Z[l]=W[l]a[l1]+b[l] Z [ l ] = W [ l ] a [ l − 1 ] + b [ l ] 便会减小,由上图可知,在z较小的区域里,tanh(z)函数近似线性,所以每层的函数就近似线性函数,整个网络就成为一个简单的近似线性的网络,从而不会发生过拟合。

6. Dropout 正则化

Dropout(随机失活)就是在神经网络的Dropout层,为每个神经元结点设置一个随机消除的概率(如0.5),删除选中的节点以及对应的连线。对于保留下来的神经元,我们得到一个节点较少,规模较小的网络进行训练,解决过拟合问题。

这里写图片描述

实现Dropout的方法:反向随机失活(Inverted dropout)

用一个三层网络进行举例,首先假设对 layer 3 进行dropout:

keep_prob = 0.8  # 设置神经元保留概率
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
a3 = np.multiply(a3, d3)
a3 /= keep_prob

这里解释下为什么要有最后一步:a3 /= keep_prob

依照例子中的keep_prob = 0.8 ,那么就有大约20%的神经元被删除了,也就是说a[3]中有20%的元素被归零了,在下一层的计算中有Z[4]=W[4]⋅a[3]+b[4],所以为了不影响Z[4]的期望值,所以需要W[4]⋅a[3]的部分除以一个keep_prob。

Inverted dropout通过对“a3 /= keep_prob”,则保证无论keep_prob设置为多少,都不会对Z[4]的期望值产生影响。

Notation:在测试阶段不要用dropout,因为那样会使得预测结果变得随机。

7. 理解 Dropout

另外一种对于Dropout的理解。

这里我们以单个神经元入手,单个神经元的工作就是接收输入,并产生一些有意义的输出,但是加入了Dropout以后,输入的特征都是有可能会被随机清除的,所以该神经元不会再特别依赖于任何一个输入特征,也就是说不会给任何一个输入设置太大的权重。

所以通过传播过程,dropout将产生和L2范数相同的收缩权重的效果。

对于不同的层,设置的keep_prob也不同,一般来说神经元较少的层,会设keep_prob
=1.0,神经元多的层,则会将keep_prob设置的较小。
这里写图片描述
缺点:

dropout的一大缺点就是其使得 Cost function不能再被明确的定义,以为每次迭代都会随机消除一些神经元结点,所以我们无法绘制出每次迭代J(W,b)下降的图,如下:

这里写图片描述
使用Dropout:

关闭dropout功能,即设置 keep_prob = 1.0;
运行代码,确保J(W,b)函数单调递减;
再打开dropout函数。

8. 其他正则化方法

数据扩增(Data augmentation):通过图片的一些变换,得到更多的训练集和验证集;
这里写图片描述
Early stopping:在交叉验证集的误差上升之前的点停止迭代,避免过拟合。这种方法的缺点是无法同时解决bias和variance之间的最优。
这里写图片描述

9. 归一化输入

假设我们有一个训练集,它有两个输入特征,对数据集特征x1,x2归一化的过程:

归一化需要两个步骤:

第一步:零均值化
计算每个特征所有样本数据的均值:

μ=1mi=1mx(i) μ = 1 m ∑ i = 1 m x ( i )

第二步:归一化方差
这里的特征x1的方差比特征x2的方差要大得多,我们要做的是给σ赋值。σ^2是一个向量,它的每个特征都有方差。
减去均值得到对称的分布:x:=x−μ;
归一化方差:
σ2=1mi=1mx(i)2,x=xσ2 σ 2 = 1 m ∑ i = 1 m x ( i ) 2 , x = x σ 2

这里写图片描述

使用归一化的原因:

我们不希望训练集和测试集的归一化有所不同,不论μ和 σ2 σ 2 的值是什么,这两个公式中都会用到他们,所以我们要用相同的方法调整测试集,而不是在训练集和测试集上分别估计μ和 σ2 σ 2 。我们希望不论是训练数据还是测试数据,都是通过相同的μ和 σ2 σ 2 定义的相同数据转换,其中μ和 σ2 σ 2 是由训练集数据计算得来的。我们为什么想要归一化输入特征?
回忆一下右上角的cost function,由图可以看出不使用归一化和使用归一化前后Cost function 的函数形状会有很大的区别。
这里写图片描述
在不使用归一化的代价函数中,如果我们设置一个较小的学习率,那么很可能我们需要很多次迭代才能到达代价函数全局最优解;如果使用了归一化,那么无论从哪个位置开始迭代,我们都能以相对很少的迭代次数找到全局最优解。

10. 梯度消失与梯度爆炸

训练深度网络时,通过选择随机初始化权重,避免梯度消失和爆炸问题。如下图所示的神经网络结构,以两个输入为例:

这里写图片描述
这里我们首先假定 g(z)=zb[l]=0 g ( z ) = z , b [ l ] = 0 ,所以对于目标输出有:

yhat=W[L]W[L1]W[2]W[1]X y h a t = W [ L ] W [ L − 1 ] ⋯ W [ 2 ] W [ 1 ] X
W^{[l]}的值大于1的情况:
如: W[l]=[1.5001.5] W [ l ] = [ 1.5 0 0 1.5 ] ,那么最终, yhat=W[L][1.5001.5]L1X y h a t = W [ L ] [ 1.5 0 0 1.5 ] L − 1 X ,激活函数的值将以指数级递增;
W^{[l]}的值小于1的情况:
如: W[l]=[0.5000.5] W [ l ] = [ 0.5 0 0 0.5 ] ,那么最终, yhat=W[L][0.5000.5]L1X y h a t = W [ L ] [ 0.5 0 0 0.5 ] L − 1 X ,激活函数的值将以指数级递减。

上面的情况对于导数也是同样的道理,所以在计算梯度时,根据情况的不同,梯度函数会以指数级递增或者递减,导致训练导数难度上升,梯度下降算法的步长会变得非常非常小,需要训练的时间将会非常长。

在梯度函数上出现的以指数级递增或者递减的情况就分别称为梯度爆炸或者梯度消失。

11. 利用初始化缓解梯度消失和爆炸问题

以一个单个神经元为例子:
这里写图片描述
由上图可知,当输入的数量n较大时,我们希望每个wi的值都小一些,这样它们的和得到的z也较小。

这里为了得到较小的wi,设置Var(wi)=1/n,这里称为Xavier initialization。
对参数进行初始化:

W^{[L]} = np.random.randn(WL.shape[0],WL.shape[1])* np.sqrt(1/n)

这么做是因为,如果激活函数的输入x近似设置成均值为0,标准方差1的情况,输出z也会调整到相似的范围内。虽然没有解决梯度消失和爆炸的问题,但其在一定程度上确实减缓了梯度消失和爆炸的速度。

不同激活函数的 Xavier initialization:

激活函数使用Relu:Var(wi)=2/n
激活函数使用tanh:Var(wi)=1/n
其中n是输入的神经元个数,也就是n[l−1]。

12. 梯度的数值逼近

这里写图片描述
使用双边误差的方法去逼近导数:
这里写图片描述
由图可以看出,双边误差逼近的误差是0.0001,先比单边逼近的误差0.03,其精度要高了很多。

涉及的公式:
这里写图片描述

13. 梯度检验

下面用前面一节的方法来进行梯度检验,在反向传播中执行梯度验证。

连接参数

因为我们的神经网络中含有大量的参数:W[1],b[1],⋯,W[L],b[L],为了做梯度检验,需要将这些参数全部连接起来,reshape成一个大的向量θ,把矩阵W转换成一个向量。
同时对dW[1],db[1],⋯,dW[L],db[L]执行同样的操作,d[1]与w1 具有相同的维度,可以将所有导数转换成一个大向量。
这里写图片描述

进行梯度检验

现在的问题是代价函数J的梯度或者坡度有什么关系,这就是实施梯度验证(grad check)的过程:
这里写图片描述

求出 dθapprox[i]dθ[i] d θ a p p r o x [ i ] 和 d θ [ i ] 的值,对i的每个值都执行这个运算,最后得到两个向量,得到 dθapproxdθ d θ a p p r o x 和 d θ ,他俩都与θ具有相同的维度,判断 dθapproxdθ d θ a p p r o x ≈ d θ 是否接近。

具体来说,如何判断两个向量是否真的接近彼此,一般做下列运算:
判断公式:

||dθapproxdθ||2||dθapprox||2+||dθ||2 | | d θ a p p r o x − d θ | | 2 | | d θ a p p r o x | | 2 + | | d θ | | 2

(其中, ||||2 “ | | ⋅ | | 2 ” 表示欧几里得范数,它是误差平方之和,然后求平方根,得到的欧氏距离。)

用这个公式进行运算,epsilon 值可能为10的-7次方,使用这个取值范围内的epsilon,会发现计算方程式得到的值为10的-7次方或更小,值越小结果越好,意味着导数逼近可能是正确的。如果结果是10的-3次方或者更大,就要考虑是否存在bug。

14. 实现梯度检验时的注意事项

  • 不要在训练过程中使用梯度检验,只在debug的时候使用,使用完毕关闭梯度检验的功能;(意思是计算出所有i值的 dθapprox[i] d θ a p p r o x [ i ] 是一个漫长的过程,为了实现梯度下降,必须使用反向传播计算θ和导数,所以只在调试的时候确认数值时候接近dθ。)
  • 如果算法的梯度检验出现了错误,要检查每一项,找出错误,也就是说要找出哪个 dθapprox[i]dθ[i] d θ a p p r o x [ i ] 与 d θ [ i ] 的值相差比较大;
  • 使用正则化的时候要注意正则化项;(如果代价函数J等于这个式子的值,dθ等于与θ相关的J函数的梯度,包括这个正则项,记得包括正则项)
    这里写图片描述
  • 梯度检验不能与dropout同时使用。因为每次迭代的过程中,dropout会随机消除隐层单元的不同神经元,这时是难以计算dropout在梯度下降上的代价函数J;
  • 当w和b接近0时,梯度下降的实施是正确的,但是在运行梯度下降时,w和b变大,结果会变得越来越不准确。可能只在w和b接近0的时候,反向传播的实施才是正确的。所以,在随机初始化过程中运行梯度检验,然后再训练网络,然后在训练几次后再重新进行梯度验证。

课后作业链接:http://blog.csdn.net/koala_tree/article/details/78137306

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值