find the most comfortable road
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7602 Accepted Submission(s): 3194
Problem Description
XX星有许多城市,城市之间通过一种奇怪的高速公路SARS(Super Air Roam Structure---超级空中漫游结构)进行交流,每条SARS都对行驶在上面的Flycar限制了固定的Speed,同时XX星人对 Flycar的“舒适度”有特殊要求,即乘坐过程中最高速度与最低速度的差越小乘坐越舒服 ,(理解为SARS的限速要求,flycar必须瞬间提速/降速,痛苦呀 ),
但XX星人对时间却没那么多要求。要你找出一条城市间的最舒适的路径。(SARS是双向的)。
但XX星人对时间却没那么多要求。要你找出一条城市间的最舒适的路径。(SARS是双向的)。
Input
输入包括多个测试实例,每个实例包括:
第一行有2个正整数n (1<n<=200)和m (m<=1000),表示有N个城市和M条SARS。
接下来的行是三个正整数StartCity,EndCity,speed,表示从表面上看StartCity到EndCity,限速为speedSARS。speed<=1000000
然后是一个正整数Q(Q<11),表示寻路的个数。
接下来Q行每行有2个正整数Start,End, 表示寻路的起终点。
第一行有2个正整数n (1<n<=200)和m (m<=1000),表示有N个城市和M条SARS。
接下来的行是三个正整数StartCity,EndCity,speed,表示从表面上看StartCity到EndCity,限速为speedSARS。speed<=1000000
然后是一个正整数Q(Q<11),表示寻路的个数。
接下来Q行每行有2个正整数Start,End, 表示寻路的起终点。
Output
每个寻路要求打印一行,仅输出一个非负整数表示最佳路线的舒适度最高速与最低速的差。如果起点和终点不能到达,那么输出-1。
Sample Input
4 4 1 2 2 2 3 4 1 4 1 3 4 2 2 1 3 1 2
Sample Output
1 0
题意: 先输入两个数,分别表示,顶点个数和道路数目
下面为道路数目行的数值,表示start end start到end需要的速度
下面表示有两组数据 求从a到b的最佳路线(即找出最大速度和最小速度差值最小的数值)
思路:首先把速度(权值)从小到大的start和end依次连通,直到a到b连通为止,拿最大的边减去最小的。
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int set[100010];
int n;
struct node
{
int u;
int v;
int w;
} e[110000];
void init()
{
for(int i=1; i<=n; i++)
set[i]=i;
}
bool cmp(node a,node b)
{
return a.w<b.w;
}
int findx(int x)
{
int r=x;
if(set[r]!=r)
r=findx(set[r]);
return set[r];
}
int merge(int x,int y)
{
int fx,fy;
fx=findx(x);
fy=findx(y);
if(fx!=fy)
{
set[fy]=fx;
}
}
int main()
{
int i,m,j,a,b,t;
while(~scanf("%d%d",&n,&m))
{
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w) ;
}
sort(e+1,e+m+1,cmp); //将速度从小到大排列
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&a,&b);
int minn=99999999;
for(i=1; i<=m; i++) //舍弃最小的那个权值,进行下一个小的当最小值进行重新连通
{
init(); //每次查找重新赋初始值,即把它们全部再拆散,再变成全部以自己为父节点的独立的点
for(j=i; j<=m; j++)
{
merge(e[j].u,e[j].v); //按权值从小到大依次连接起来
if(findx(a)==findx(b))//判断a,b是否连通
{
if(minn>e[j].w-e[i].w) //连通之后拿最大的那条边(因为权值从小到大排列,最后一个肯定是最大的)(e[j].w)-能连通的最小的那个边
{
minn=e[j].w-e[i].w;
}
break;
}
}
}
if(minn==99999999) printf("-1\n");
else
printf("%d\n",minn);
}
}
}