linger(心怀梦想,活在当下,知乎ID:linger liu)

互联网的小码农(数据挖掘,推荐系统,广告系统)

Tensorflow入门:数据结构和编程思想

Tensorflow入门:数据结构和编程思想引言: 最近tensorflow很火,看到国内都有不少人开始玩起来了,自己最近有些想法想玩玩,于是开始入门搞一下,因为自己只有一个台式电脑,于是就装了个cpu版的tensorflow,安装过程挺顺利,一两句命令搞定,最后遇到过glibc的版本问题,直接...

2017-03-12 14:03:15

阅读数 5190

评论数 1

pagerank以及个性化的pagerank算法

pagerank以及个性化的pagerank算法 pagerank最开始是Google提出来用来衡量网页重要度排行的算法。 她的思想是基于网页之间互相的链接作为加权投票。假如网页a指向b, 那么网页b的重要程度受网页a的影响,a越重要,则b就越重要。假如网页c也指向b, 但是c...

2015-07-21 20:11:40

阅读数 4904

评论数 2

隐性反馈行为数据的协同过滤推荐算法

隐性反馈行为数据的协同过滤推荐算法 《Collaborative Filtering for Implicit Feedback Datasets》论文笔记 本文是我阅读《CollaborativeFiltering for Implicit Feedback Datasets》论文的笔记...

2015-07-16 21:47:00

阅读数 6477

评论数 0

建QQ群作为大家技术交流的平台

建个QQ群作为大家技术交流的平台 最近有很多读者来问我关于caffe的问题,由于我不搞caffe很久了,所以难以高效回答大家的问题。 因此,建QQ群作为大家技术交流的平台。 caffe,深度学习交流群:419906840 机器学习,数据挖掘,推荐广告搜索交流群:126643980

2015-05-14 19:47:48

阅读数 2149

评论数 0

SVD推荐算法(二)

SVD推荐算法(二) 这次讲解的是model-based的SVD推荐算法。 跟ALS推荐算法一样,都是矩阵分解的推荐算法,只不过求解的方式不同而已。   假如评分矩阵是R,那么我们希望拟合这样一个模型 R=U*M 其中U是user特征,M是item特征。 假如一个user的特征是u,一个item的...

2015-04-24 20:17:05

阅读数 5124

评论数 2

SVD推荐算法(一)

SVD推荐算法(一) 看了不少论文,总结起来用SVD做推荐主要有两种不同的方式。 1 本质上是memory-based,只不过先用SVD对user-item的评分矩阵做降维,得到降维后的user特征和item特征,可以分别做userbased的协同过滤和itembased的协同过滤。 2  本质上...

2015-04-24 20:12:52

阅读数 8103

评论数 3

ALS矩阵分解推荐模型

ALS矩阵分解推荐模型 其实通过模型来预测一个user对一个item的评分,思想类似线性回归做预测,大致如下 定义一个预测模型(数学公式), 然后确定一个损失函数, 将已有数据作为训练集, 不断迭代来最小化损失函数的值, 最终确定参数,把参数套到预测模型中做预测。   矩阵分解的预测模型是...

2015-03-05 21:08:19

阅读数 11957

评论数 0

mahout中map-reduce版的itembased推荐算法思想

mahout中map-reduce版的itembased推荐算法思想 最近想写一个map-reduce版的userbased,于是先研究mahout中已实现的itembased算法。itembased看起来简单,但是深入到实现细节还是有点复杂的,用map-reduce实现就更复杂了。   i...

2015-01-12 23:53:12

阅读数 1742

评论数 0

层次分析法量化用户的产品偏好

层次分析法量化用户的产品偏好               用户对产品有很多行为,如何进行用户行为分析来量化用户对产品的喜好程度呢?               比如豆瓣FM,用户可以点击“喜好”和"扔进垃圾箱"等;比如优酷视频,用户可以顶,踩,分享等。             ...

2014-12-19 01:03:15

阅读数 4947

评论数 1

搞了个微信号,关注数据挖掘,机器学习

我搞了个微信号(data_bird),关注大数据,数据挖掘,机器学习,深度学习。 与大家共同与时俱进!

2014-11-20 00:45:49

阅读数 3175

评论数 0

linger博客原创性博文导航

linger博客原创性博文导航 http://blog.csdn.net/lingerlanlan 大学研究游戏外挂技术开始了此博客,断断续续写了些博文。后来,开始机器学习和深度学习的研究工作,由于喜欢和热爱,业余时间也经常性学习,并写博文总结。因此,博文越来越多,由于博文是根据时间排序的,看起...

2014-08-14 22:12:46

阅读数 2709

评论数 1

ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)

ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践。 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学...

2014-08-10 01:05:43

阅读数 7624

评论数 11

word2vec源码解析之word2vec.c

//下面是我对word2vec.c的注释 //详细算法可以参考论文,或者看这篇博客 http://www.cnblogs.com/downtjs/p/3784440.html // Copyright 2013 Google Inc. All Rights Reserved. // // ...

2014-07-28 19:00:41

阅读数 22128

评论数 1

word2vector学习笔记(一)

最近研究了一下google的开源项目word2vector,http://code.google.com/p/word2vec/。 其实这玩意算是神经网络在文本挖掘的一项成功应用。 本文是看了论文《Distributed Representations of Words and Phrases a...

2014-07-22 20:06:45

阅读数 31093

评论数 2

神经网络:caffe特征可视化的代码样例

不少读者看了我前面两篇文章 总结一下用caffe跑图片数据的研究流程 deep learning实践经验总结2--准确率再次提升,到达0.8,再来总结一下 之后,想知道我是怎么实现特征可视化的。

2014-07-09 12:56:36

阅读数 11289

评论数 33

deep learning实践经验总结2--准确率再次提升,到达0.8,再来总结一下

deep learning实践经验总结 最近拿caffe来做图片分类,遇到不少问题,同时也吸取不少教训和获得不少经验。

2014-06-19 15:25:40

阅读数 11599

评论数 16

deep learning实践经验总结

最近拿caffe来做图片分类,遇到不少问题,同时也吸取不少教训和获得不少经验。

2014-06-17 19:18:05

阅读数 5022

评论数 7

caffe卷积神经网络框架安装

caffe是一个清晰,可读性高,快速的深度学习框架。作者是贾扬清,加州大学伯克利的ph.D,先就职于google。 caffe的官网是http://caffe.berkeleyvision.org/。

2014-03-27 17:27:20

阅读数 10142

评论数 7

C++实现获取DOTA玩家名称(反汇编查找指针地址和跨进程读取war3内存)

C++实现获取DOTA玩家名称(反汇编查找指针地址和跨进程读取war3内存)    大学时做了一个类似11小秘书的工具,就是一键查看当前玩家的11天梯积分。其中,获取DOTA玩家名称是其中一个模块,这部分代码之前没公布,现在发出来共享给各位编程爱好者。   其中的思路是,先用反汇编技术把DOTA...

2016-12-29 23:29:16

阅读数 2032

评论数 0

mahout的itembased推荐算法改造

mahout的itembased推荐算法改造 需求背景: itembased主要是两个步骤: 1 item相似度的计算 2根据user所评分过的item,以及item之间的相似度,预测未知item的分数   mahout的itembased现有的问题: mahout集成的itembased...

2016-02-16 11:05:53

阅读数 1309

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭