将数据变换到0到255之间,归一化

本文介绍了一种将像素值进行归一化的算法实现过程,该算法能够将原始像素值映射到0到255之间的指定范围内。通过确定最大最小像素值并应用线性变换完成映射。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

piexl为各个坐标点的数据值(将其转换到0到255之间)
int ymax=255;//要归一的范围的最大值
int ymin=0;//要归一的范围的最小值
xmax=max(piexl);所有数据中最大的
xmin=min(piexl);所有数据中最小的
xiugaihou_piexl=round((ymax-ymin)*(piexl_m-xmin)/(xmax-xmin)+ymin);  piexl_m为当前坐标的数据  xiugaihou_piexl为变换后的数据值
PCA归一化处理并不是将数据归一化0和1之间。PCA(Principal Component Analysis,主成分分析)是一种降维技术,其目的是通过线性变换将原始数据映射到一个新的特征空间,以便降低数据维度的同时保持最大的信息量。在PCA中,归一化指的是对原始数据进行均值中心化处理,即将每个特征的值减去该特征的均值,使得数据的均值为0。这是为了消除数据之间的平移差异。归一化并不限制数据的取值范围,因此数据的范围不一定会被归一化0和1之间。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [基于matlab的PCA特征提取,归一化PCA特征提取,LDA特征提取以及归一化LDA特征提取四种算法的数据分类对比+...](https://download.csdn.net/download/ccsss22/86042495)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [pca2D.rar_gait recognition_matlab 步态识别_人脸归一化_图像归一化_步态识别](https://download.csdn.net/download/weixin_42659194/86094849)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值