2024 年高教社杯全国大学生数学建模竞赛B题第一问详细解题思路(终版)

示例代码:

from scipy.stats import norm

# 定义参数
p0 = 0.10  # 标称次品率
alpha = 0.05  # 95% 信度下的显著性水平
beta = 0.10  # 90% 信度下的显著性水平
E = 0.01  # 允许的误差范围

# 计算95%信度下的样本量
Z_alpha_2 = norm.ppf(1 - alpha / 2)
n_95 = ((Z_alpha_2 * (p0 * (1 - p0))**0.5) / E)**2

# 计算90%信度下的样本量
Z_beta_2 = norm.ppf(1 - beta / 2)
n_90 = ((Z_beta_2 * (p0 * (1 - p0))**0.5) / E)**2

# 打印结果
print(f"在95%信度下,所需的最小样本量为: {int(n_95)}")
print(f"在90%信度下,所需的最小样本量为: {int(n_90)}")

# 假设检验函数
def hypothesis_test(sample_size, p0, alpha):
    # 生成样本数据(这里使用p0作为实际次品率进行模拟)
    samples = [1 if norm.rvs() < p0 else 0 for _ in range(sample_size)]
    sample_mean = sum(samples) / sample_size
    
    # 计算95%置信区间
    Z = norm.ppf(1 - alpha / 2)
    lower_bo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值