2024 年高教社杯全国大学生数学建模竞赛B题第三问详细解题思路(终版)

示例代码:

import numpy as np
import pandas as pd

# 参数设定
params = {
    'm': 8,  # 零配件数量
    'n': 2,  # 半成品数量
    'p': [0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10],  # 零配件次品率
    'c': [2, 8, 12, 2, 8, 12, 8, 12],  # 购买单价
    'd': [1, 1, 2, 1, 1, 2, 1, 2],  # 检测成本
    'a': [8, 8],  # 装配成本
    'pf': 0.10,  # 成品次品率
    's': 200,  # 市场售价
    'l': 40,  # 调换损失
    'r': 6  # 拆解费用
}

# 决策变量
decisions = [0, 1]

# 利润计算函数
def calculate_profit(D, C, R, params):
    cost_parts = sum(params['c'][i] + params['d'][i] * D[i] for i in range(params['m']))
    cost_subassemblies = sum(params['a'][j] + params['d'][j + params['m']] * C[j] for j in range(params['n&#
<<关于2024数学建模国赛B,由于目前尚未发布具体的目,我无法提供具体的目内容。通常情况下,数学建模竞赛目会涉及多个学科领域,要求参赛者运用数学建模方法解决实际,比如优化、预测、决策等。届时,相关目将会在官方平台公布,参赛者需要根据目要求,建立数学模型,求解,并撰写论文进行阐述。 在准备参加数学建模竞赛时,建议先了解往目和相关论文,熟悉数学建模的基本流程和方法,如: 1. 理解与分析:详细阅读目,理解背景和要求,对进行分析。 2. 假设与模型建立:根据特点提出合理的假设,并构建相应的数学模型。 3. 模型求解:运用数学工具和算法对建立的模型进行求解。 4. 结果分析与验证:分析求解结果的合理性,并通过实验或数据验证模型的有效性。 5. 论文撰写:整理分析过程和结果,按照规范撰写论文。 由于目尚未公布,建议你提前做好以下准备: 1. 加强数学知识的学习,特别是微积分、线性代数、概率统计等基础课程。 2. 学习并掌握常见的数学建模方法和软件工具,如MATLAB、Python、Lingo等。 3. 关注数学建模竞赛的官方通知,及时了解赛事动态和报名信息。 4. 可以通过参加学校或地方组织的数学建模培训和模拟赛来提升实战经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值