windows下配置TensorFlow-GPU完整教程

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lingshanshengzu/article/details/80393929

     Windows下搭建深度学习环境TensorFlow-gpu完整教程

1 安装anaconda ,pycharm,安装很容易,只需要注意安装anaconda时将自动添加环境变量这个选项打上勾,安装之后将anaconda的python路径加到pycharm中;

 

2 安装cuda和cudnn,在安装之前需要先安装vs2015(2015以下版本,2017可能不兼容,不建议下载),由于tensorflow的版本对cuda和cudnn的限制,tensorflow1.4需要安装cuda8.0.44和对应的cudnn6.0,tensorflow1.6需要安装cuda9.0和cudnn7,安装cuda时,不要修改默认的安装地址,改了也没用,它会自动安装在c盘;安装cuda时,杀毒软件先关掉。

 

3 以cuda8和cudnn6为例,安装好cuda后,通过命令nvcc –V查看cuda是否安装好,然后用vs2015编译C:\ProgramData\NVIDIACorporation\CUDA Samples\v8.0下的2015.sln文件,可以将2015.sln全部生成,也可以只生成1_utilities,编译成功后,到C:\ProgramData\NVIDIA Corporation\CUDASamples\v7.5\bin\win64\Release目录下打开cmd,然后执行deviceQuery.exe和bandwidthTest.exe,运行结果都是result=pass就可以了。

4 配置cuda的环境变量,以cuda8.0和cudnn6.0为例,

将C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin,

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\include,

C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v8.0\lib\x64 加进环境变量path中,

将cudnn解压,为了后面避免出现麻烦,将cudnn解压后的地址也添加到path中

 

5将cudnn中解压后对应的文件复制到cuda对应的目录下,目录分别在第3步的地址下

将cudnn的文件也复制到C:\ProgramData\NVIDIA GPU Computing Toolkit\v8.0下,将此地址也复制到path中

 

6 关机重启,让环境变量生效

 

7 安装tensorflow-gpu 建议下载好对应的版本后通过pipinstall 安装,tensorflow下载地址https://pypi.org/simple/tensorflow-gpu/ ,即下载好.whl文件后,到此文件的目录下打开cmd, 输入pip install xxxx.whl即可,由于anaconda上已经安装好了大多数常用的库,所以只需要将opencv和keras通过pip安装好基本就够用了。

 

8 调试一下是否安装成功

展开阅读全文

没有更多推荐了,返回首页