Python青少年学编程之秦九韶算法(初三、高中信息技术)

本文介绍了秦九韶算法,一种古代中国的高次多项式求值方法,并详细阐述了如何用Python实现这一算法,包括多项式输入、数学输出、求值算法以及算法的扩展版本,适合青少年学习编程。
摘要由CSDN通过智能技术生成

目录

1、多项式函数

2、多项式函数求值

3、一元高次多项式求值的秦九韶算法实现

3.1 秦九韶算法

3.2 秦九韶算法的python实现

3.2.1 多项式的输入In_F

3.2.2 的数学输出Out_F(f)

3.2.3 求值的秦九韶算法实现QJS_Poly(f,x)

3.2.4 秦九韶算法扩展版QJS_Poly_ex(f,x)


1、多项式函数

关于x的一元多项式,它有很多非常直观的函数表达F(x)。

F(x)=x+1

F(x)=x^{2}+2x-2

F(x)=4x^{3}+2x^{2}-9x+1

F(x)=2x^{10}-3x^{8}-5x^{6}+x^{3}+8x^{2}+x+1

你可以用函数、方程、代数式之间的关系去理解多项式、多项式求值、多项式函数、一元高次多项式等不同表述。

2、多项式函数求值

当我们创建好条件,规避掉风险,十载寒窗数据收集,邀请发小数学家小明、物理学家小东、生物学家小强三宵两夜彻夜分析,穷究古今中外理论之大成辛辛苦苦描绘出函数后,函数求值将显得那么光芒万丈、熠熠生辉,如日临大地般指引我们昂首前进。

那么,对于任意给定的一个关于x的n次多项式, 如何求任一x的函数值?

F(x)=4x^{3}+2x^{2}-9x+1为例,这样求F(2)不香吗?

那这样呢?

前方高能。

真香,还可以是这样!

我们当下的知识当然是博大精微,拥有的计算工具形形色色,多项式求值那是轻轻松松两三秒搞定,可古时候的人们计算方法很有限,自然是拒绝各种其他香。

那么,那时候的算法对我们还有意义吗?这个,你觉得有那就有,你觉得没有那就没有,我们都可以做回大爷。我还是比较认为有的。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值