BZOJ 4916 神犇和蒟蒻

题目大意

给定 n n n,模 1 0 9 + 7 10^9+7 109+7 意义下,求 Sum μ ′ ( n ) = ∑ i = 1 n μ ( i 2 ) \begin{aligned}\text{Sum}_{\mu'}(n)= \sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\mu(i^2)\\ \end{aligned} Sumμ(n)=i=1nμ(i2) Sum φ ′ ( n ) = ∑ i = 1 n φ ( i 2 ) \begin{aligned}\text{Sum}_{\varphi'}(n)= \sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\varphi(i^2)\\ \end{aligned} Sumφ(n)=i=1nφ(i2)
数据范围  1 ⩽ n ⩽ 1 0 9 1\leqslant n\leqslant 10^9 1n109

题解

μ ′ \mu' μ 是很容易的。
Sum μ ′ ( n ) = ∑ i = 1 n μ ( i 2 ) = μ ( 1 ) + ∑ i = 2 n μ ( i 2 ) = 1 + 0 = 0 \begin{aligned}\text{Sum}_{\mu'}(n)&= \sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\mu(i^2)\\ &=\mu(1)+\sum_{i=2}^n\mu(i^2)\\ &=1+0\\&=0\end{aligned} Sumμ(n)=i=1nμ(i2)=μ(1)+i=2nμ(i2)=1+0=0

然后是 φ ′ \varphi' φ,考虑将其唯一分解。
Sum φ ′ ( n ) = ∑ i = 1 n φ ( i 2 ) = ∑ i = 1 n φ ( ( ∏ t = 1 k p t a t ) 2 ) = ∑ i = 1 n φ ( ∏ t = 1 k p t 2 a t ) = ∑ i = 1 n ∏ t = 1 k φ ( p t 2 a t ) = ∑ i = 1 n ∏ t = 1 k p t 2 a t ( 1 − 1 p t ) = ∑ i = 1 n i ∏ t = 1 k p t a t ( 1 − 1 p t ) = ∑ i = 1 n i × φ ( i ) \begin{aligned}\text{Sum}_{\varphi'}(n)&= \sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\varphi(i^2)\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\varphi\left(\left(\prod_{t=1}^kp_t^{a_{_t}}\right)^2\right)\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\varphi\left(\prod_{t=1}^kp_t^{2a_{_t}}\right)\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\prod_{t=1}^k\varphi\left(p_t^{2a_{_t}}\right)\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}\prod_{t=1}^kp_t^{2a_{_t}}(1-\frac 1{p_t})\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}i\prod_{t=1}^kp_t^{a_{_t}}(1-\frac 1{p_t})\\ &=\sum_{i=1}^{^{^{^{}}}n^{^{^{}}}}i\times \varphi(i)\\ \end{aligned} Sumφ(n)=i=1nφ(i2)=i=1nφ(t=1kptat)2=i=1nφ(t=1kpt2at)=i=1nt=1kφ(pt2at)=i=1nt=1kpt2at(1pt1)=i=1nit=1kptat(1pt1)=i=1ni×φ(i)

因此,我们只需要杜教筛出 φ ⋅ i d \varphi\cdot id φid 即可。
f = φ ⋅ i d f=\varphi\cdot id f=φid 时,取 g = i d g=id g=id f ∗ g = i d 2 f*g=id^2 fg=id2
则有:
Sum φ ⋅ i d = n ( n + 1 ) ( 2 n + 1 ) 6 − ∑ k = 2 n k × Sum φ ⋅ i d ( ⌊ n k ⌋ ) \begin{aligned}\text{Sum}_{φ⋅id} &=\frac{n(n+1)(2n+1)}{6}-\sum_{k=2}^nk\times \text{Sum}_{\varphi\cdot id}\bigg(\Big\lfloor\frac nk\Big\rfloor\bigg)\\ \end{aligned} Sumφid=6n(n+1)(2n+1)k=2nk×Sumφid(kn)

杜教筛即可。时间复杂度为 T ( n ) = Θ ( n 2 3 ) T(n)=\Theta(n^{2\over 3}) T(n)=Θ(n32)

#include<bits/stdc++.h>
using namespace std;
#define maxn 2000010
const long long mod=1e9+7;
long long inv_6;
long long p[maxn],phi[maxn],vis[maxn];
map<long long,long long> Phi;
void reset(long long n=maxn){
	memset(vis,0,sizeof vis);
	long long tot=0;phi[1]=1;
	for(long long i=2;i<=n;i++){
		if(!vis[i]) p[++tot]=i,phi[i]=(i-1)%mod;
		for(long long j=1;j<=tot&&i*p[j]<=n;j++){
			vis[i*p[j]]=true;
			phi[i*p[j]]=phi[i]*(p[j]-1)%mod;
			if(i%p[j]==0){
				phi[i*p[j]]=phi[i]*p[j]%mod;
				break;
			}
		}
	} for(long long i=1;i<=n;i++)
		phi[i]=(phi[i-1]+(phi[i]*i)%mod)%mod;
}
#define calc(a) ((((a)+1)*(a))>>1)
long long Phi_id(long long n){
	if(n<maxn) return phi[n];
	{	map<long long,long long>::iterator it=Phi.find(n);
		if(it!=Phi.end()) return it->second;	}
	long long ans=n*(n+1)%mod*(2*n+1)%mod*inv_6%mod;
	for(long long l=2,r;l<=n;l=r+1){
		r=min(n/(n/l),n);
		ans=(ans-(calc(r)-calc(l-1))*Phi_id(n/l)%mod+mod)%mod;
	} return Phi[n]=ans;
}
long long pow_t(long long a,long long b){
	if(b==0) return 1;
	if(b==1) return a%mod;
	long long t=pow_t(a,b/2);
	if(b%2==0) return (t*t)%mod;
	return (t*t%mod)*a%mod;
}
signed main(void){
	inv_6=pow_t(6,mod-2);
	reset();
	int n;scanf("%d",&n);
	printf("1\n%lld",Phi_id(n));
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值