笔记:量子力学初探

写在最前面:本文是阅读《Quantum Computation and Quantum Information》时所做。

[2.2.1]

1.幅度

定义:设量子状态 ∣ φ ⟩ |\varphi\rangle φ具有在一组基下的分解 ∣ φ ⟩ = ∑ i λ i ∣ i ⟩ |\varphi \rangle = \displaystyle \sum_i \lambda_i|i\rangle φ=iλii.称基 ∣ i ⟩ |i\rangle i的系数 λ i \lambda_i λi ∣ φ ⟩ |\varphi\rangle φ在基 ∣ i ⟩ |i\rangle i 的幅度。

2.量子力学假设一:

任意孤立系统都有一个Hilbert空间与之联系,称这个空间为系统的状态空间。系统完全由状态向量描述。且这个向量是系统状态的系统一个单位向量。(根据归一化条件)。

[2.2.2]

3.量子力学假设二:

3.1 定义

一个封闭系统的演化可由一个酉变换刻画。如设系统在 t 1 t_1 t1的状态为 ∣ φ ⟩ |\varphi\rangle φ,在 t 2 t_2 t2时刻是状态 ∣ φ ′ ⟩ |\varphi^{'}\rangle φ.则存在一个酉变换 U U U,使得 U ∣ φ ⟩ = ∣ φ ′ ⟩ U|\varphi\rangle= |\varphi^{'}\rangle Uφ=φ.

U U U仅依赖于时刻 t 1 , t 2 t_1,t_2 t1,t2.

该假设是由薛定谔方程推导出的.

另外作用在单量子比特上的酉算子都可以在实际系统中实现.

3.2 Pauli矩阵的别称

X X X,量子非门。

X , Z X,Z X,Z,比特翻转矩阵.

3.3薛定谔方程

3.3.1 表达式及含义

封闭系统演化的微分形式由薛定谔(schrödinger)方程描述:

i ℏ d ∣ φ ⟩ d t = H ∣ φ ⟩ i\hbar\frac{d|\varphi\rangle}{dt} = H|\varphi\rangle idtdφ=Hφ

其中 H H H称为Hamilton量,是一个不随时间变化的Hermite矩阵。 ℏ \hbar 是约化普朗克常量,是个标量.

*3.3.2 哈密顿量的说明

H H H是Hermite算子,具有谱分解 H = ∑ E E ∣ E ⟩ ⟨ E ∣ H = \displaystyle \sum_{E}E|E\rangle\langle E| H=EEEE.称状态 ∣ E ⟩ |E\rangle E为本征态(energy eigenstate),或定态(stationary state)。

E E E ∣ E ⟩ |E \rangle E的能量。最小的 E E E称为基态能量,对应的 ∣ E ⟩ |E\rangle E称为基态。

有时候我们可以给封闭系统进行操作一段时间(量子非门),这段时间内系统不再封闭,但我们可以恰当修改 H H H的值,使得薛定谔方程仍能描述这个系统,此时 H H H与时间有关,称修改后的 H H H为时变哈密顿量。注意这个过程与测量是有一定区别的,具体区别如今前沿物理学仍在探索中。

3.3.3薛定谔方程的解

可以证明 ∣ φ ⟩ = e x p ( − i H ( t − t 0 ) ℏ ) ∣ φ 0 ⟩ |\varphi \rangle = exp(\frac{-iH(t-t_0)}{\hbar})|\varphi_0\rangle φ=exp(iH(tt0))φ0是薛定谔方程的一个解。其中 t 0 t_0 t0是初始时间, ∣ φ 0 ⟩ |\varphi_0\rangle φ0是初始状态.

(证明所需用到的知识参见附录(appendix)A1).

于是对于任意时刻 t t t,定义 U = e x p ( − i H ( t − t 0 ) ℏ ) U = exp(\frac{-iH(t-t_0)}{\hbar}) U=exp(iH(tt0)),可以证明 U U U是酉变换。于是有 ∣ φ t ⟩ = U ∣ φ 0 ⟩ |\varphi_{t}\rangle=U|\varphi_{0}\rangle φt=Uφ0,量子假设二得证.

[2.2.3]

4.量子测量

4.1 量子力学假设3:(一般测量)

量子测量由一组测量算子{ M m M_m Mm}描述,算子 M m M_m Mm满足 ∑ m M m † M m = I \displaystyle \sum_{m}M_m^{\dagger}M_m = I mMmMm=I.这组算子对状态 ∣ φ ⟩ |\varphi \rangle φ测量后得到结果 m m m的概率为 p ( m ) = ⟨ φ ∣ M m † M m ∣ φ ⟩ p(m)=\langle\varphi|M_m^{\dagger}M_m|\varphi\rangle p(m)=φMmMmφ.测量后得到新状态为 M m ∣ φ ⟩ ⟨ φ ∣ M m † M m ∣ φ ⟩ \frac{M_m|\varphi\rangle}{\sqrt{\langle\varphi|M_m^{\dagger}M_m|\varphi\rangle}} φMmMmφ Mmφ.

算子 M m M_m Mm的完备性关系保证了 ∑ m p ( m ) = 1. \displaystyle \sum_{m}p(m)=1. mp(m)=1.

有时也称这种测量为一般测量.

4.2 在基下的测量

定义 M m = ∣ i ⟩ M_m = |i\rangle Mm=i,其中 ∣ i ⟩ |i \rangle i是一组标准正交基。此时称测量是在基 ∣ i ⟩ |i \rangle i下的.

可以证明,此时测量是一个投影测量的等价形式.(投影测量见6)

4.3 串联测量

对于一个状态 ∣ φ ⟩ | \varphi \rangle φ,先对其进行算子 L l L_l Ll的测量,再对其进行算子 M m M_m Mm的测量,在最终结果上等价于进行算算子 N l m ≡ M m L l N_{lm} \equiv M_mL_l NlmMmLl所描述的测量。(证明考虑两次结果中的 p l m p_{lm} plm和最终状态.)

[2.1.4]

5.非正交态不可可靠区分

证明思路:假设有两个状态 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ |\varphi_1\rangle,|\varphi_2\rangle φ1,φ2.

( 1 ) (1) (1).倘若状态 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ |\varphi_1\rangle,|\varphi_2\rangle φ1,φ2正交,可以定义包含 M 1 = ∣ φ 1 ⟩ , M 2 = ∣ φ 2 ⟩ M_1 = |\varphi_1\rangle,M_2 = |\varphi_2\rangle M1=φ1,M2=φ2在内的一组测量算子{ M m M_m Mm},此时 M m M_m Mm测量两个状态时,都有概率为 1 1 1的情况下得到 ∣ φ 1 ⟩ |\varphi_1\rangle φ1 ∣ φ 2 ⟩ |\varphi_2\rangle φ2.

( 2 ) (2) (2).倘若状态 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ |\varphi_1\rangle,|\varphi_2\rangle φ1,φ2不正交,假设可以通过某些情况 j j j来猜测未知状态为状态 ∣ φ ⟩ 1 |\varphi\rangle_1 φ1,定义函数 f ( j ) = 1 f(j) = 1 f(j)=1,此时用相应测量算子测量 ∣ φ 1 ⟩ |\varphi_1\rangle φ1,显然结果只能是集合 { j ∣ f ( j ) = 1 } \{ j|f(j)=1 \} {jf(j)=1}的元素。 (条件1)且有 ∑ j : f ( j ) = 1 p ( j ) = 1 \displaystyle \sum_{j:f(j)=1}p(j)=1 j:f(j)=1p(j)=1. (条件2)

同理,同一套测量算子(必须是同一套,因为作用时你无法区分两个状态。)作用到也必须满足类似的两个条件.即测量结果是 { j ∣ f ( j ) = 2 } \{j|f(j)=2\} {jf(j)=2}中的元素,且 ∑ j : f ( j ) = 2 p ( j ) = 1 \displaystyle \sum_{j:f(j)=2}p(j)=1 j:f(j)=2p(j)=1.

然而测量 ∣ φ 2 ⟩ |\varphi_2\rangle φ2时, ∣ φ 2 ⟩ |\varphi_2\rangle φ2 ∣ φ 1 ⟩ |\varphi_1\rangle φ1上的分量会干扰测量结果,这种干扰是无法通过调整测量算子得到的,必然会与四个条件之一矛盾.(严格证明考虑数学表达式即可).

同理,多个非正交状态也无法可靠区分。

[2.1.5]

6.投影测量

6.1 定义

投影测量由被观测系统状态空间上的一个可观测量Hermite算子 M M M描述,该可观测量具有谱分解 M = ∑ m m P m M = \displaystyle \sum_{m}mP_m M=mmPm的形式, m m m M M M的特征值, P m P_m Pm m m m本征空间上的投影。测量状态 ∣ φ ⟩ |\varphi\rangle φ时,得到状态 m m m(以 m m m为状态 m m m出现的情况编号)的概率为 p ( m ) = ⟨ φ ∣ P m ∣ φ ⟩ p(m) = \langle \varphi|P_m|\varphi\rangle p(m)=φPmφ.状态变为 P m ∣ φ ⟩ ⟨ φ ∣ P m ∣ φ ⟩ \frac{P_m|\varphi\rangle}{ \langle \varphi|P_m|\varphi\rangle} φPmφPmφ.

6.2 与一般测量的关系

**数学表达式上的关系:**定义测量算子 M m = P m M_m = P_m Mm=Pm,即当测量算子{ M m M_m Mm}中的元素满足 M m M m ′ = δ m m ′ M m M_mM_{m^{'}} = \delta_{mm^{'}}M_m MmMm=δmmMm,且 M m M_m Mm是Hermite算子时,可以证明两者测量结果时完全一致的。

事实上,引入辅助系统后可以证明,任意测量算子可以表示为先经过酉变换再进行投影测量的形式.(证明见12辅助系统.)

6.3 利用投影测量计算平均值和标准差

可以证明,对于多个处于状态 ∣ φ ⟩ |\varphi\rangle φ的量子态用 M M M进行投影测量,则测量后的平均值为 ⟨ φ ∣ M ∣ φ ⟩ . \langle \varphi|M|\varphi\rangle. φMφ.

在不引起误会的情况下,式子 ⟨ φ ∣ M ∣ φ ⟩ \langle \varphi|M|\varphi\rangle φMφ常简写为 ⟨ M ⟩ \langle M \rangle M,且涉及矩阵运算时, M − ⟨ M ⟩ I M-\langle M\rangle I MMI常省略 I I I.

测量后标准差 [ △ ( X ) ] 2 = ⟨ M 2 ⟩ − ⟨ M ⟩ 2 [\triangle (X) ]^2 = \langle M^2\rangle - \langle M\rangle^2 [(X)]2=M2M2.

(证明用期望的定义式与投影测量的概率表达式.)

7.海森堡不确定关系

对于一群完全一样的量子状态分别用投影测量 C , D C,D C,D进行测量,则测量得到的标准差 △ ( C ) , △ ( D ) \triangle(C),\triangle(D) (C),(D)满足:

△ ( C ) △ ( D ) ≥ 1 2 ( ⟨ φ ∣ [ C , D ] ∣ φ ⟩ ) \triangle(C)\triangle(D)\geq \frac{1}{2}(\langle \varphi|[C,D] |\varphi\rangle) (C)(D)21(φ[C,D]φ)(证明参见A1.4)

可以看见,海森堡不确定关系的本质是由于算子 C , D C,D C,D不对易引起的。

[2.1.6]

8.POVM 测量 定义

在一般测量中,定义 M m † M m M_m^{\dagger}M_m MmMm为一个 P O V M POVM POVM元,用字母 E m E_m Em表示,显然 E m E_m Em是半正定的(也是Hermite的),且满足 ∑ m E m = I \displaystyle \sum_{m}E_m = I mEm=I.

定义{ E m E_m Em}为POVM测量。

9.不错地区分非正交状态

( 1 ) . (1). (1).方案:

对于一组非正交线性无关的状态 ∣ φ i ⟩ ( 1 ≤ i ≤ m ) |\varphi_i\rangle(1\leq i\leq m ) φi(1im),对于每一个 ∣ φ i ⟩ |\varphi_i\rangle φi,寻找一组线性无关的单位向量 ∣ ψ i ⟩ |\psi_i\rangle ψi,使得 ∣ ψ i ⟩ |\psi_i\rangle ψi ∣ φ i ⟩ |\varphi_i\rangle φi正交。

定义POVM测量 E i = p ∣ ψ ⟩ ⟨ ψ ∣ ( 1 ≤ i ≤ m ) E_i =p|\psi\rangle\langle\psi|(1\leq i\leq m) Ei=pψψ(1im).调整 p ( p ≥ 0 ) p(p\geq0) p(p0)的值,使得在保持 p p p最大的情况下, E m + 1 = I − ∑ m E m E_{m+1} = I-\displaystyle \sum_{m}E_m Em+1=ImEm是半正定的。

此时使用 E i E_i Ei测量便能不错地区分非正交量子状态。

( 2 ) . (2). (2).说明

为了说明,考虑两个量子状态 ∣ 0 ⟩ , ∣ + ⟩ |0\rangle,|+\rangle 0,+.定义 E 1 = 2 1 + 2 ∣ 1 ⟩ ⟨ 1 ∣ , E 2 = 2 1 + 2 ∣ − ⟩ ⟨ − ∣ , E 3 = I − E 1 − E 2 E_1 = \frac{\sqrt2}{1+\sqrt2}|1\rangle\langle1|,E_2 = \frac{\sqrt2}{1+\sqrt2}|-\rangle\langle-|,E_3 = I-E_1-E_2 E1=1+2 2 11,E2=1+2 2 E3=IE1E2.

可以验证,这是满足条件的POVM测量。

此时测量未知状态 ∣ φ ⟩ |\varphi\rangle φ,若测得结果为 ∣ − ⟩ |-\rangle ,则 ∣ φ ⟩ |\varphi\rangle φ一定为 ∣ 0 ⟩ . |0\rangle. 0.若测得结果为 ∣ 1 ⟩ |1\rangle 1,则 ∣ φ ⟩ |\varphi\rangle φ一定为 ∣ + ⟩ |+\rangle +.

作为代价,当测量结果为二者之外,将不会得到任何信息。否则,便违背了不可区分非正交量子状态的原理.

[2.1.7]

10.相位(Phase)

10.1 全局相位因子

若状态 ∣ ψ ⟩ , ∣ ψ ′ ⟩ |\psi\rangle,|\psi^{'}\rangle ψ,ψ有关系 ∣ ψ ′ ⟩ = e i θ ∣ ψ ⟩ |\psi^{'}\rangle = e^{i\theta}|\psi\rangle ψ=eiθψ( θ \theta θ是实数).则称 e i θ e^{i\theta} eiθ为全局相位因子。在任意测量算子的测量下,得到的结果都是一致的,因此 e i θ e^{i \theta} eiθ一般可以忽略。

10.2 相对相位因子

ψ i , φ i \psi_i,\varphi_i ψi,φi分别是状态 ∣ ψ ⟩ , ∣ φ ⟩ |\psi\rangle,|\varphi\rangle ψ,φ在基 ∣ i ⟩ |i\rangle i下的幅度,若存在实数 θ \theta θ使得 ψ i = e i θ φ i \psi_i = e^{i\theta}\varphi_i ψi=eiθφi,称幅度 ψ i \psi_i ψi φ i \varphi_i φi相差一个相对相位。

若在某个基下所有线性表示出的幅度都相差同一个相位因子,则称状态 ∣ φ ⟩ |\varphi\rangle φ ∣ ψ ⟩ |\psi\rangle ψ在这个基下相差一个相对相位。

[2.1.8]

11.复合系统

11.1 量子力学假设4:

复合系统的状态空间是分系统的状态空间的张量积。即若分系统处于状态 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ . . . ∣ φ n ⟩ |\varphi_1\rangle,|\varphi_2\rangle...|\varphi_n\rangle φ1,φ2...φn,则复合状态的状态向量为 ∣ φ 1 ⟩ ⊗ ∣ φ 2 ⟩ . . . ⊗ ∣ φ n ⟩ |\varphi_1\rangle \otimes|\varphi_2\rangle...\otimes|\varphi_n\rangle φ1φ2...φn.

有时这个式子也简写为 ∣ φ 1 ⟩ ∣ φ 2 ⟩ . . . ∣ φ n ⟩ |\varphi_1\rangle |\varphi_2\rangle...|\varphi_n\rangle φ1φ2...φn.

11.2 复合系统的线性算子

定义 M i M_i Mi是线性算子 M M M作用到复合系统的第 i i i个分系统的线性算子。

M i = I 1 ⊗ I 2 . . . ⊗ I i − 1 ⊗ M i ⊗ I i + 1 . . . ⊗ I n M_i = I_1\otimes I_2...\otimes I_{i-1}\otimes M_i\otimes I_{i+1}...\otimes I_n Mi=I1I2...Ii1MiIi+1...In.

可以证明,这个式子是符合定义的。

12.辅助系统

12.1 概念

使用固定测量算子进行测量时,在某些情况下可以引入辅助系统,使得测量结果出现目标结果。

引入辅助系统后,利用酉变换与投影测量可以实现所有一般测量算子。

12.2 应用:解决投影测量与一般测量的关系

对于任意测量算子 M m M_m Mm与任意空间 Q Q Q的状态 ∣ ψ ⟩ |\psi\rangle ψ,引入辅助分系统 ∣ 0 ⟩ |0\rangle 0, ∣ 0 ⟩ |0\rangle 0是和 ∣ ψ ⟩ |\psi\rangle ψ同维度的空间 M M M任意固定向量,因此复合系统的状态为 ∣ ψ ⟩ ∣ 0 ⟩ |\psi\rangle|0\rangle ψ0.

定义酉变换 U U U U ∣ ψ ⟩ ∣ 0 ⟩ = ∑ m M m ∣ ψ ⟩ ∣ m ⟩ . U|\psi\rangle|0\rangle =\displaystyle \sum_{m}M_m|\psi\rangle|m\rangle. Uψ0=mMmψm.定义 ∣ m ⟩ |m\rangle m M M M的一组标准正交基.

可以证明,有式子 ⟨ ψ ∣ ⟨ 0 ∣ U † U ∣ 0 ⟩ ∣ ψ ⟩ = ⟨ ψ ∣ ψ ⟩ \langle\psi| \langle 0|U^{\dagger}U|0\rangle|\psi\rangle =\langle\psi|\psi\rangle ψ0UU0ψ=ψψ.这步应用了内积的性质实现降维/升维。

U U U扩展为 Q ⊗ M Q\otimes M QM上的酉变换(参见A1.5)

定义投影测量 M p = ∑ i m ∣ m ⟩ ⟨ m ∣ M_p =\displaystyle \sum_{i}m|m\rangle\langle m| Mp=immm,

于是对于目标分系统 ∣ ψ ⟩ |\psi\rangle ψ,用 U U U作用后使用 M p M_p Mp测量结果与 M m M_m Mm测量一致。

13.纠缠态

13.1 定义

是否所有复合状态都是分状态的复合?

考虑状态 ∣ φ ⟩ = 1 2 ( ∣ 00 ⟩ + ∣ 11 ⟩ ) |\varphi\rangle = \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) φ=2 1(00+11).

可以证明不存在一个分状态 ∣ a ⟩ , ∣ b ⟩ |a\rangle,|b\rangle a,b使得 ∣ a ⟩ ∣ b ⟩ = ∣ φ ⟩ |a\rangle|b\rangle = |\varphi\rangle ab=φ.

这些不能用分状态复合表示的状态即为纠缠态。纠缠态的原因至今仍在探索中。

13.2 贝尔态

贝尔态指的是如下四个纠缠态:

∣ β x y ⟩ = 1 2 ( ∣ 0 , y ⟩ + ( − 1 ) x ∣ 1 , y ˉ ⟩ ) |\beta_{xy}\rangle = \frac{1}{\sqrt2}(|0,y\rangle+(-1)^x|1,\bar{y}\rangle) βxy=2 1(0,y+(1)x1,yˉ)

其中 x , y ∈ { 0 , 1 } x,y\in\{0,1\} x,y{0,1}. y ˉ \bar{y} yˉ y y y的二进制取补。

贝尔态也称为EPR对.

Appendix 附录

收录可能用到的数学知识

A1 线性代数

线性代数大部分可以翻看之前的线性代数总结篇,这里只介绍总结篇中未提及的知识。

A1.1 矩阵微积分

矩阵微积分是一个庞大的领域,这里仅介绍解薛定谔方程能用到的知识.

设向量 ∣ y ⟩ = [ y 1 y 2 ⋮ y m ] |y\rangle = \left[\begin{matrix} y_1\\y_2\\ \vdots \\y_m\end{matrix}\right] y=y1y2ym

定义 d ∣ y ⟩ d x = [ d y 1 d x d y 2 d x ⋮ d y m d x ] , ∂ ∣ y ⟩ ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x ⋮ ∂ y m ∂ x ] \frac{d|y\rangle}{dx} = \left[\begin{matrix} \frac{dy_1}{dx}\\\frac{dy_2}{dx}\\ \vdots \\\frac{dy_m}{dx}\end{matrix}\right],\frac{\partial|y\rangle}{\partial x} = \left[\begin{matrix} \frac{\partial y_1}{\partial x}\\\frac{\partial y_2}{\partial x}\\ \vdots \\\frac{\partial y_m}{\partial x}\end{matrix}\right] dxdy=dxdy1dxdy2dxdym,xy=xy1xy2xym

积分是微分的逆运算.

A1.2酉矩阵与Hermite矩阵的关系

对于任意酉矩阵 U U U,存在一个Hermite矩阵 K K K,使得 K = − i l n ( U ) K=-iln(U) K=iln(U)或者 U = e x p ( i K ) U = exp(iK) U=exp(iK).(证明参见算子函数)

A1.3 特殊矩阵的特征值

( 1 ) . (1). (1).若矩阵 A A A满足 A † = − A , A^{\dagger} = -A, A=A, A A A的特征值全是虚数。(证明考虑谱分解)

( 2 ) . (2). (2).定义三维实单位列向量 v ⃗ \vec v v 与元素是Pauli矩阵的向量 σ ⃗ \vec \sigma σ 的点积:

v ⃗ ⋅ σ ⃗ = v 1 X + v 2 Y + v 3 Z \vec{v} \cdot \vec{\sigma} = v_1X+v_2Y+v_3Z v σ =v1X+v2Y+v3Z.

于是可以计算出$\vec{v} \cdot \vec{\sigma} 的 特 征 值 为 的特征值为 \pm1.$对应的特征向量为

∣ λ + ⟩ = 1 2 ( I + v ⃗ ⋅ σ ⃗ ) . |\lambda_{+} \rangle= \frac{1}{2}(I+\vec{v}\cdot\vec{\sigma}). λ+=21(I+v σ ).

∣ λ − ⟩ = 1 2 ( I − v ⃗ ⋅ σ ⃗ ) . |\lambda_{-}\rangle = \frac{1}{2}(I-\vec{v}\cdot\vec{\sigma}). λ=21(Iv σ ).

A1.4 对易式与反对易式的性质

A , B A,B A,B是Hermite矩阵, ∣ φ ⟩ |\varphi\rangle φ是一个单位向量,则有等式:

∣ ⟨ φ ∣ [ A , B ] ∣ φ ⟩ ∣ 2 + ∣ ⟨ φ ∣ { A , B } ∣ φ ⟩ ∣ 2 = 4 ∣ ⟨ φ ∣ A B ∣ φ ⟩ ∣ 2 |\langle\varphi|[A,B]|\varphi\rangle|^2 +|\langle\varphi|\{A,B\}|\varphi\rangle|^2 = 4|\langle\varphi|AB|\varphi\rangle|^2 φ[A,B]φ2+φ{A,B}φ2=4φABφ2[证明考虑对易式谱分解和实部虚部]

忽略含反对易式的加项和均值不等式,可得不等式

∣ ⟨ φ ∣ [ A , B ] ∣ φ ⟩ ∣ 2 ≤ 4 ⟨ φ ∣ A 2 ∣ φ ⟩ ⟨ φ ∣ B 2 ∣ φ ⟩ |\langle\varphi|[A,B]|\varphi\rangle|^2 \leq 4\langle\varphi|A^2|\varphi\rangle\langle\varphi|B^2|\varphi\rangle φ[A,B]φ24φA2φφB2φ.

A1.5 酉矩阵的扩展

V V V是一个Hilbert空间, W W W是其子空间,设 U U U W → V W \rightarrow V WV的线性变换。则存在 V → V V\rightarrow V VV酉算子 U ′ U^{'} U,使得对于任意 W W W空间的向量 ∣ w ⟩ |w\rangle w U ∣ w ⟩ = U ′ ∣ w ⟩ U|w\rangle = U^{'}|w\rangle Uw=Uw.(证明考虑谱分解)

A2 概率论

A2.1 平均值

A2.1.1 定义式

随机变量 X X X的平均值定义为随机变量的期望。且 X X X期望 E ( X ) = ∑ X p ( X ) X . E(X) = \displaystyle \sum_{X}p(X)X. E(X)=Xp(X)X.

A2.1.2 期望的性质

( 1 ) . (1). (1).线性性质: E ( a X + b ) = a E ( X ) + b . E(aX+b) = aE(X)+b. E(aX+b)=aE(X)+b.

( 2 ) . (2). (2).对乘法可分配: E ( X Y ) = E ( X ) + E ( Y ) . E(XY) = E(X)+E(Y). E(XY)=E(X)+E(Y).

A2.2 方差

A2.2.1 定义式

定义随机变量 X X X的方差 s 2 ( X ) = E ( ( X − E ( X ) 2 ) s^2(X) = E((X-E(X)^2) s2(X)=E((XE(X)2)

定义随机变量 X X X的标准差 △ ( X ) = s ( X ) = s 2 ( X ) \triangle (X) =s(X)= \sqrt{s^2(X)} (X)=s(X)=s2(X) .

A2.2.2 方差的性质

s 2 ( X ) = E ( X 2 ) − E 2 ( X ) s^2(X) = E(X^2)-E^2(X) s2(X)=E(X2)E2(X).(证明用期望的性质1,2)
本文写作时较为仓促,有所疏漏在所难免,欢迎理性讨论。

全文完。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值