exgcd——青蛙的约会

17 篇文章 0 订阅

题目链接

exgcd——青蛙的约会

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙 A 和青蛙 B,并且规定纬度线上东经 0 度处为原点,由东往西为正方向,单位长度 1 米,这样我们就得到了一条首尾相接的数轴。设青蛙 A 的出发点坐标是 x,青蛙 B 的出发点坐标是 y。青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花费的时间相同。纬度线总长 L 米。现在要你求出它们跳了几次以后才会碰面。

输入描述

输入只包括一行 5 个整数 x,y,m,n,L。

输出描述

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行 Impossible。

示例

输入

1 2 3 4 5

输出

4

备注

对于 100% 的数据,0 ≤ x,y < 2 × 109,0 < m,n < 2 × 109,0 < L < 2.1 × 109。保证 x ≠ y。

分析

由题意,可得
(x + m * t) % L = (y + n * t) % L
所以,可以化为
(m - n) * t + k * L = y-x
这样就可以运用 exgcd 来求解了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll exgcd(ll a,ll b,ll &x,ll &y)
{
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	ll d=exgcd(b,a%b,x,y);
	ll t=y;
	y=x-(a/b)*y;
	x=t;
	return d;
}

int main()
{
	ll x,y,m,n,l,s,t;
	cin>>x>>y>>m>>n>>l;
	ll gcd=exgcd(m-n,l,s,t);
	if(abs(y-x)%gcd!=0){
		cout<<"Impossible"<<endl;
	}
	else{
		s*=(y-x)/gcd;
		cout<<(s%l+l)%l<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值