exgcd——青蛙的约会
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙 A 和青蛙 B,并且规定纬度线上东经 0 度处为原点,由东往西为正方向,单位长度 1 米,这样我们就得到了一条首尾相接的数轴。设青蛙 A 的出发点坐标是 x,青蛙 B 的出发点坐标是 y。青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花费的时间相同。纬度线总长 L 米。现在要你求出它们跳了几次以后才会碰面。
输入描述
输入只包括一行 5 个整数 x,y,m,n,L。
输出描述
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行 Impossible。
示例
输入
1 2 3 4 5
输出
4
备注
对于 100% 的数据,0 ≤ x,y < 2 × 109,0 < m,n < 2 × 109,0 < L < 2.1 × 109。保证 x ≠ y。
分析
由题意,可得
(x + m * t) % L = (y + n * t) % L
所以,可以化为
(m - n) * t + k * L = y-x
这样就可以运用 exgcd 来求解了
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0){
x=1;
y=0;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=y;
y=x-(a/b)*y;
x=t;
return d;
}
int main()
{
ll x,y,m,n,l,s,t;
cin>>x>>y>>m>>n>>l;
ll gcd=exgcd(m-n,l,s,t);
if(abs(y-x)%gcd!=0){
cout<<"Impossible"<<endl;
}
else{
s*=(y-x)/gcd;
cout<<(s%l+l)%l<<endl;
}
return 0;
}