题目描述
在一个圆形操场的四周摆放 N 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出一个算法,计算出将 N 堆石子合并成 1 堆的最小得分和最大得分。
输入格式
数据的第 1 行是正整数 N,表示有 N 堆石子。
第 2 行有 N 个整数,第 i 个整数 ai 表示第 i 堆石子的个数。
输出格式
输出共 2 行,第 1 行为最小得分,第 2 行为最大得分。
输入输出样例
输入
4
4 5 9 4
输出
43
54
说明/提示
1 ≤ N ≤ 100,0 ≤ ai ≤ 20。
分析
可以使用区间dp,状态转移方程为:
dp1[i][j] = min(dp1[i][j],dp1[i][t] + dp1[t+1][j] +sum[j] - sum[i-1])
dp2[i][j] = max(dp2[i][j],dp2[i][t] + dp2[t+1][j] + sum[j] - sum[i-1])
#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
int n,a[305],dp1[305][305],dp2[305][305],sum[305];
int main()
{
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
a[i+n]=a[i];
}
for(int i=1;i<=2*n;i++){ // 前缀和
sum[i]=sum[i-1]+a[i];
}
for(int len=1;len<n;len++){
for(int i=1;i<n*2;i++){
int j=i+len;
if(j>=n*2){
break;
}
dp1[i][j]=inf;
for(int t=i;t<j;t++){
dp1[i][j]=min(dp1[i][j],dp1[i][t]+dp1[t+1][j]+sum[j]-sum[i-1]);
dp2[i][j]=max(dp2[i][j],dp2[i][t]+dp2[t+1][j]+sum[j]-sum[i-1]);
}
}
}
int mn=inf,mx=-inf;
for(int i=1;i<n;i++){
mn=min(mn,dp1[i][i+n-1]);
mx=max(mx,dp2[i][i+n-1]);
}
cout<<mn<<endl;
cout<<mx<<endl;
return 0;
}