动态规划——石子合并(区间与环形动态规划)

题目链接

题目描述

在一个圆形操场的四周摆放 N 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出一个算法,计算出将 N 堆石子合并成 1 堆的最小得分和最大得分。

输入格式

数据的第 1 行是正整数 N,表示有 N 堆石子。
第 2 行有 N 个整数,第 i 个整数 ai 表示第 i 堆石子的个数。

输出格式

输出共 2 行,第 1 行为最小得分,第 2 行为最大得分。

输入输出样例

输入

4
4 5 9 4

输出

43
54

说明/提示

1 ≤ N ≤ 100,0 ≤ ai ≤ 20。

分析

可以使用区间dp,状态转移方程为:
dp1[i][j] = min(dp1[i][j],dp1[i][t] + dp1[t+1][j] +sum[j] - sum[i-1])
dp2[i][j] = max(dp2[i][j],dp2[i][t] + dp2[t+1][j] + sum[j] - sum[i-1])

#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
int n,a[305],dp1[305][305],dp2[305][305],sum[305];

int main()
{
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		a[i+n]=a[i];
	}
	for(int i=1;i<=2*n;i++){	// 前缀和 
		sum[i]=sum[i-1]+a[i];
	}
	for(int len=1;len<n;len++){
		for(int i=1;i<n*2;i++){
			int j=i+len;
			if(j>=n*2){
				break;
			}
			dp1[i][j]=inf;
			for(int t=i;t<j;t++){
				dp1[i][j]=min(dp1[i][j],dp1[i][t]+dp1[t+1][j]+sum[j]-sum[i-1]);
				dp2[i][j]=max(dp2[i][j],dp2[i][t]+dp2[t+1][j]+sum[j]-sum[i-1]);
			}
		}
	}
	int mn=inf,mx=-inf;
	for(int i=1;i<n;i++){
		mn=min(mn,dp1[i][i+n-1]);
		mx=max(mx,dp2[i][i+n-1]);
	}
	cout<<mn<<endl;
	cout<<mx<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值