【次短路模板】Roadblocks

这篇博客介绍了一道算法问题,要求在给定的乡村地图中找出从节点1到节点N的次短路径,不等于最短路径且允许道路重复。通过Dijkstra算法和dist2数组实现,展示了如何处理无向图中的次优路线计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Description

Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1…N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

Input

Line 1: Two space-separated integers: N and R
Lines 2…R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

Output

Line 1: The length of the second shortest path between node 1 and node N

Sample Input

4 4
1 2 100
2 4 200
2 3 250
3 4 100

Sample Output

450

Hint

Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

题目大意

给定一个 n 各点,r 条边的无向图,求出从 1 到 n 的严格次短路。(不能等于最短路,边可以重复经过)。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int, int> pii;
const int maxn = 5e3 + 10;
const int inf = 0x3f3f3f3f;
int dist[maxn], dist2[maxn], n, r;	// dist 数组用于存储最短路径,dist2 数组用于存储次短路径 

struct node{
	int to, len;
};

vector<node> f[maxn];

void dijkstra(int t)
{
	memset(dist, inf, sizeof(dist));
	memset(dist2, inf, sizeof(dist2));
	dist[t] = 0;
	priority_queue<pii, vector<pii>, greater<pii> > q;
	q.push(pii(0, t));
	while(!q.empty()){
		pii p = q.top();
		q.pop();
		int dis = p.first;
		int tt = p.second;
		if(dist2[tt] < dis)		// 如果当前点的距离大于次短路的话,就不需要再去判断了 
			continue;
		for(int i = 0; i < f[tt].size(); i++){
			node a = f[tt][i];
			if(dist[a.to] > dis + a.len){		// 当前距离小于最短路,则更新最短路和次短路 
				dist2[a.to] = dist[a.to];
				dist[a.to] = dis + a.len;
				q.push(pii(dist[a.to], a.to));
			}
			else if(dis + a.len < dist2[a.to] && dis + a.len != dist[a.to]){		// 当前距离大于最短路但小于次短路则更新次短路 
				dist2[a.to] = dis + a.len;
				q.push(pii(dist2[a.to], a.to));
			}
		}
	}
}

int main()
{
	cin >> n >> r;
	for(int i = 0; i < r; i++){
		int u, v, w;
		cin >> u >> v >> w;
		f[u].push_back({v, w});
		f[v].push_back({u, w});
	}
	dijkstra(1);
	cout << dist2[n] << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值