原题传送门:[USACO06NOV]Roadblocks G - 洛谷
在做这道题之前首先要知道,单向源最短路径算法Dijkstra中的vis数组并不是必要的,如果他的下一个节点可以更新最短路,那么我们把它加入优先队列。
vis的作用只是提高算出最短路的效率,这道题要求是次短路,并且每条路可以走多次,如果加入vis数组这道题是会出错的。
因为没有vis所以不能简单的取dist[nxt]=min(dist[nxt],dist[now]+toNxt);
基于最短路算法的基础上,维护一个dist1[]数组来代表次短路,两者同样都是“最短路”,但是逻辑上次短路要比最短路长。
也就是说,把次短路当成最短路来维护。
AC代码
#include <bits/stdc++.h>
using namespace std;
using PII=pair<int,int>;
const int MAXN=5000+1;
int n,r,dist[MAXN],dist1[MAXN];
vector<PII>e[MAXN];
priority_queue<PII,vector<PII>,greater<PII>>q;
inline void scan(){
scanf("%d %d",&n,&r);
int a,b,d;
for(int i=1;i<=r;i++){
scanf("%d %d %d",&a,&b,&d);
e[a].push_back({d,b});
e[b].push_back({d,a});
}
}
inline void dijkstra(){
for(int i=2;i<=n;i++)
dist1[i]=dist[i]=INT_MAX/2;
//同样都是最短路,不能忘记都要初始化
//次短路的开头不能是0,不然长度和最短路一样了
dist1[1]=INT_MAX/2;
q.push({0,1});
while(!q.empty()){
int now=q.top().second;
q.pop();
for(auto i:e[now]){
int nxt=i.second,toNxt=i.first;
//更新最短路
if(dist[now]+toNxt<dist[nxt]){
//dist1[nxt]=dist[nxt];
dist[nxt]=dist[now]+toNxt;
q.push({dist[nxt],nxt});
}
//最短路没被更新,但是这条路比次短路更短
if(dist[now]+toNxt>dist[nxt]&&dist[now]+toNxt<dist1[nxt]){
dist1[nxt]=dist[now]+toNxt;
q.push({dist[nxt],nxt});
//此处注意,是基于最短路基础上多维护的次短路,因此入队的不可以是dist1[nxt]
}
//使次短路满足最短路逻辑
if(dist1[now]+toNxt<dist1[nxt]){
dist1[nxt]=dist1[now]+toNxt;
q.push({dist[nxt],nxt});
}
}
}
}
int main(){
scan();
dijkstra();
cout<<dist1[n];
return 0;
}
对于更新最短路中间那个注释的代码的解释,那一行代码加不加都是AC,因为不加这一句话会在第二个if被实现,加了就是提前实现。
加这一行的理解:最短路被更新了,那么被更新之前的最短路必定是次短路,逻辑更加通顺。
核心:次短路也是一种最短路,要让次短路满足最短路逻辑,即第三个if