惊人的论文……
> Pic credits : Pinterest
Qlib:面向AI的量化投资平台
作者:杨晓,刘卫清,周冬,姜边,刘铁岩
摘要—
量化投资旨在在一系列金融工具上的连续交易期间内,最大化回报,并最大程度地降低风险。最近,受AI技术的飞速发展和巨大潜力的启发,该技术在定量投资方面产生了显着的创新,因此越来越多地采用AI驱动的工作流进行定量研究和实际投资。在丰富定量投资方法的同时,人工智能技术对定量投资系统提出了新的挑战。特别是,用于定量投资的新学习范例要求对基础设施进行升级,以适应更新后的工作流程;此外,人工智能技术的游戏转让平台数据驱动特性确实表明对具有更强大性能的基础架构的需求。此外,应用人工智能技术解决财务场景中的不同任务也存在一些独特的挑战。为了应对这些挑战并弥合AI技术与量化投资之间的差距,我们设计和开发了Qlib,旨在实现潜力,增强研究能力并创造AI技术在量化投资中的价值。
论文可以在这里找到:arxiv/pdf/2009.11189v1.pdf
代码可以在这里找到:github/microsoft/qlib
自我注意生成对抗网络
作者:张涵,伊恩·古德费洛,迪米特里斯·梅塔克萨斯,奥古斯都·奥德纳
摘要—
自我注意生成对抗网络(SAGAN)允许对图像生成任务进行注意力驱动的远程依赖性建模。传统的卷积GAN生成高分辨率细节,仅作为低分辨率特征图中空间上局部点的函数。在SAGAN中,可以使用来自所有要素位置的提示来生成细节。此外,鉴别者可以检查图像的远处部分中的高度详细的特征是否彼此一致。此外,最近的工作表明,发电机调节会影响GAN性能。利用这种见解,我们将频谱归一化应用于GAN生成器,并发现这可以改善训练动态。拟议中的SAGAN取得了最先进的结果,在具有挑战性的ImageNet数据集上,将最佳已发布的Inception分数从36.8提高到52.52,并将Frechet Inception距离从27.62降低到18.65。注意层的可视化显示生成器利用了与对象形状相对应的邻域,而不是固定形状的局部区域。
论文可以在这里找到:arxiv/pdf/1805.08318v2.pdf
代码可以在这里找到:github/brain-research/self-attention-gan
AdaBelief优化程序:根据观察梯度中的信念调整步长
庄俊堂,汤米(Tommy Tang),丁一凡,Sekhar Tatikonda,尼莎·德沃涅克(Nicha Dvornek),色诺芬·帕帕德米特(Xenophon Papademetris),詹姆斯·邓肯(James S.Duncan)
摘要—
最受欢迎的深度学习优化器可大致分为自适应方法(例如Adam)和加速方案(例如具有动量的随机梯度下降(SGD))。对于许多模型,例如卷积神经网络(CNN),与SGD相比,自适应方法通常收敛速度更快,但泛化效果更差。对于诸如生成对抗网络(GAN)之类的复杂环境,自适应方法通常由于其稳定性而成为默认方法。我们提出AdaBelief同时实现三个目标:自适应方法中的快速收敛,SGD中的良好通用性以及训练稳定性。 AdaBel