一文读懂容错机制

本文介绍了分布式、微服务项目中的容错机制,包括隔离机制、补偿机制、熔断机制和重试机制。隔离机制通过业务拆分和服务区分来防止故障蔓延;补偿机制用于保证最终的一致性和可用性,需要设计幂等性方法;熔断机制通过三种状态(关闭、打开、半开)保护下游服务,减少错误影响;重试机制针对暂时性故障进行尝试,防止网络波动带来的影响。这些机制在设计时需结合业务场景和监控系统进行考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012482647/article/details/78148447

随着分布式、微服务项目的快速发展,各个服务之间的通讯,难免出现依赖关系,若某一个单元出现故障,就很容易因依赖关系而发生故障的蔓延,为了解决这样的问题,容错作为其中一项很重要的技术也广为人知。

导语

容错机制广义的理解,就是包含了很多处理错误的机制,如:熔断机制、降级机制、补偿机制、隔断机制等等。我们针对经常使用的机制进行讨论,说明这么多容错机制设计的思路,熟悉了这些之后,也许你对设计分布式项目会有所裨益。

隔离机制

隔离机制

  • 隔离设计思路
    如上图所示(图来源于网络),隔离来自单词隔板(Bulkheads),隔板作用就是如果某一边船舱漏水,不会导致整条船装满水而导致整条船下沉于水中。
    分布式项目中,我们通过技术实现隔板的作用,做到故障隔离,一般来说,一种是通过合适的业务线拆分项目,进行业务服务种类隔离,另一种是通过用户群体来区分用户访问哪台服务器,可以是城市划分(北京的访问北京服务器)或其他形

注意力机制(Attention Mechanism),尤其是自注意力(Self-Attention)机制,在自然语言处理(NLP)领域如Transformer模型中扮演了核心角色。它是一种计算模型对输入序列中每个位置的重要性的方式,允许模型集中关注相关的部分,而不是对所有信息等同对待。 传统的RNNs或CNNs只能依赖于固定长度的上下文窗口或局部信息。而注意力机制通过计算查询(query)、键(key)和值(value)之间的相似度,生成了一个注意力权重向量,这个向量表明了哪些输入部分应该被赋予更高的权重。具体来说: 1. **Query、Key和Value**:每个输入序列的位置都有一个对应的查询、键和值向量。通常查询用于寻找对应的信息,键用于评估查询的相关性,值则包含了原始的信息内容。 2. **注意力得分**:通过计算查询和每个键的点积,然后除以键的平方根,我们得到的是一个分数,表示每个位置对于当前查询的重要程度。 3. **加权和**:将这些得分转换为概率分布,然后用这个分布去乘以所有的值,得到加权后的“注意力”向量。这个向量只包含对当前位置最相关的部分。 4. **多头注意力**:为了捕捉不同类型的依赖,注意力机制可以有多个“头”(heads),每个头负责关注序列的不同方面。 注意力机制极大地提高了模型对长距离依赖的理解能力,并在机器翻译、文本摘要、情感分析等各种任务上取得了显著效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值