题面:
观察发现,一个数最多被开平方根6次,6次以后就只能为1,可以不去处理
于是可以用线段树进行区间修改:
若待修改线段与当前线段重合,且这个区间里只有1,就可以不往下处理
否则就需要递归到最底部,进行直接修改
根据前面所说,一个数最多被处理6次,复杂度为O(6*nlogn)=O(nlogn)
当然,也可以用另一种方法:并查集+树状数组
因为1是无用的,所以从l~r修改时可以跳过一连串的1,这里很适合用并查集来处理
至于树状数组是用来快速统计区间加和的,复杂度O(nlogn)
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#define LL long long
#define lowbit(x) ((x)&-(x))
const int maxn=100005;
int n,q,times,fa[maxn];
LL a[maxn],tre[maxn];
inline LL red(){
LL tot=0;char ch=getchar();
while (ch<'0'||'9'<ch) {if (ch==EOF) exit(0);ch=getchar();}
while ('0'<=ch&&ch<='9') tot=tot*10+ch-48,ch=getchar();
return tot;
}
void ist(int i,LL x){
while (i<=n)
tre[i]+=x,
i+=lowbit(i);
}
LL qry(int i){
LL res(0);
while (i)
res+=tre[i],
i-=lowbit(i);
return res;
}
int getfa(int x){
if (fa[x]==x) return x;
return fa[x]=getfa(fa[x]);
}
void work(int x){
LL aa=sqrt(a[x]);
ist(x,aa-a[x]);a[x]=aa;
if (aa==1) fa[x]=fa[x+1];
}
int main(){
freopen("sqrt.in","r",stdin);
freopen("sqrt.out","w",stdout);
while (n=red()){
printf("Case #%d:\n",++times);
memset(tre,0,sizeof(tre));
for (int i=1;i<=n;i++){
a[i]=red();ist(i,a[i]);
if (a[i]==1) fa[i]=i+1;else fa[i]=i;
}fa[n+1]=n+1;
q=red();int l,r;
while (q--)
if (red()) l=red(),r=red(),printf("%lld\n",qry(r)-qry(l-1));else{
l=red(),r=red();
for (int i=getfa(l);i<=r;i=getfa(i+1)) work(i);
}
putchar(10);
}
return 0;
}