[平方根]

题面:
这里写图片描述
观察发现,一个数最多被开平方根6次,6次以后就只能为1,可以不去处理
于是可以用线段树进行区间修改:
若待修改线段与当前线段重合,且这个区间里只有1,就可以不往下处理
否则就需要递归到最底部,进行直接修改
根据前面所说,一个数最多被处理6次,复杂度为O(6*nlogn)=O(nlogn)

当然,也可以用另一种方法:并查集+树状数组
因为1是无用的,所以从l~r修改时可以跳过一连串的1,这里很适合用并查集来处理
至于树状数组是用来快速统计区间加和的,复杂度O(nlogn)

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#define LL long long
#define lowbit(x) ((x)&-(x))
const int maxn=100005;
int n,q,times,fa[maxn];
LL a[maxn],tre[maxn];
inline LL red(){
    LL tot=0;char ch=getchar();
    while (ch<'0'||'9'<ch) {if (ch==EOF) exit(0);ch=getchar();}
    while ('0'<=ch&&ch<='9') tot=tot*10+ch-48,ch=getchar();
    return tot;
}
void ist(int i,LL x){
    while (i<=n)
     tre[i]+=x,
     i+=lowbit(i);
}
LL qry(int i){
    LL res(0);
    while (i)
     res+=tre[i],
     i-=lowbit(i);
    return res;
}
int getfa(int x){
    if (fa[x]==x) return x;
    return fa[x]=getfa(fa[x]);
}
void work(int x){
    LL aa=sqrt(a[x]);
    ist(x,aa-a[x]);a[x]=aa;
    if (aa==1) fa[x]=fa[x+1];
}
int main(){
    freopen("sqrt.in","r",stdin);
    freopen("sqrt.out","w",stdout);
    while (n=red()){
        printf("Case #%d:\n",++times);
        memset(tre,0,sizeof(tre));
        for (int i=1;i<=n;i++){
            a[i]=red();ist(i,a[i]);
            if (a[i]==1) fa[i]=i+1;else fa[i]=i;
        }fa[n+1]=n+1;
        q=red();int l,r;
        while (q--)
         if (red()) l=red(),r=red(),printf("%lld\n",qry(r)-qry(l-1));else{
            l=red(),r=red();
            for (int i=getfa(l);i<=r;i=getfa(i+1)) work(i);
         }
        putchar(10);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值