【结论+暴搜】BZOJ1053 [HAOI2007]反素数ant

题面在这里

其实就是一道结论题

观察可以发现,任意反素数拆分:
m=pk11pk22pknn
其中,若 1ijn 则有 pi<pjkikj
其实可以反证一发得到……

然后就爆搜了
代码:

#include<cstdio>
#define LL long long
const int p[11]={10,2,3,5,7,11,13,17,19,23,29};
int n,ans,yz;
LL power(int a,int b){
    LL w=a,ans=1;
    while (b){
        if (b&1) ans*=w;
        w=w*w;
        b>>=1;
    }
    return ans;
}
void dfs(LL now,int stp,int lst,int num){
    if (stp>10){
        if (num>yz||yz==num&&ans>now) ans=now,yz=num;
        return;
    }
    for (int i=0;i<=lst;i++)
     if (now*power(p[stp],i)<=n)
      dfs(now*power(p[stp],i),stp+1,i,num*(i+1));else break;
}
int main(){
    scanf("%d",&n);
    dfs(1,1,32,1);
    printf("%d",ans);
    return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值