一看就是斜率优化DP……
首先如果存在 ai≤aj且bi≤bj 则可以不处理i
去掉这些没用的土地,那么 ai 一定递增, bi 一定递减
设 fi 表示前 i 块土地全部买了的最小代价
很容易得到转移方程:
然后 k=ai,x=−bj+1,y=fj
就好了
示例程序:
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int red(){
int res=0,f=1;char ch=nc();
while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();}
while ('0'<=ch&&ch<='9') res=res*10+ch-48,ch=nc();
return res*f;
}
const int maxn=50005;
int n,N,m[maxn],now,len;
LL f[maxn];
struct data{
int x,y;
bool operator<(const data&b)const{
return x<b.x||x==b.x&&y<b.y;
}
}a[maxn];
struct point{
LL x,y;
point() {}
point (LL _x,LL _y):x(_x),y(_y) {}
point operator-(const point&b){
return point(x-b.x,y-b.y);
}
}stk[maxn];
typedef point vec;
LL det(vec a,vec b){
return a.x*b.y-a.y*b.x;
}
LL getb(point p,LL k){
return p.y-p.x*k;
}
void add(point x){
while (len>1&&det(stk[len]-stk[len-1],x-stk[len-1])<=0) len--;
now=min(now,len);stk[++len]=x;
}
point get(LL k){
while (now<len&&getb(stk[now+1],k)<getb(stk[now],k)) now++;
return stk[now];
}
int main(){
n=red();
for (int i=1;i<=n;i++) a[i].x=red(),a[i].y=red();
sort(a+1,a+1+n);
for (int i=n;i>=1;i--) m[i]=max(m[i+1],a[i].y);
for (int i=1;i<=n;i++)
if (a[i].y>m[i+1]) a[++N]=a[i];
f[0]=0;
now=len=1;stk[1]=point(-a[1].y,0);
for (int i=1;i<=N;i++){
LL k=a[i].x;
point p=get(k);
f[i]=getb(p,k);
add(point(-a[i+1].y,f[i]));
}
printf("%lld",f[N]);
return 0;
}