【KMP+DP+矩阵优化】BZOJ1009 [HNOI2008]GT考试

题面在这里

显然需要递推,定义 fi,j 为处理到第i位,不吉利数字匹配到第j位的方

显然答案就是

i=0m1fn,i

怎么转移状态?

对于 fi,j ,枚举i+1位的数字,用KMP得到不吉利数字新的匹配位置k,就有

fi+1,k+=fi,j

然而n是 109 级别的,显然不能这样搞

发现这个递推式是线性的,那么用矩阵优化就好了

我们必然能找到一个矩阵A,使得:

A×fi,0fi,1fi,2...fi,m=fi+1.0fi+1,1fi+1,2...fi+1,M

如何构造矩阵A?

考虑矩阵 Ax,y 表示 fi,y fi+1,x 的贡献

那么就枚举y和i+1这位的数字,用KMP得到x,然后累加

答案矩阵就是

An×100...0

示例程序:

#include<cstdio>
#include<cstring>
#define cl(x,y) memset(x,y,sizeof(x))

const int maxm=25;
int n,m,p,fal[maxm];
char s[maxm];
struct matrix{
    int n,m,s[maxm][maxm];
    matrix operator*(const matrix &b){
        matrix c;cl(c.s,0);
        c.n=n;c.m=b.m;
        for (int i=0;i<=c.n;i++)
         for (int j=0;j<=c.m;j++){
            c.s[i][j]=0;
            for (int k=0;k<=m;k++)
             c.s[i][j]+=s[i][k]*b.s[k][j];
            c.s[i][j]%=p;
         }
        return c;
    }
}A,ans;
matrix power(matrix a,int b){
    matrix w=a,ans;ans.n=a.n;ans.m=a.m;
    cl(ans.s,0);for (int i=0;i<=m;i++) ans.s[i][i]=1;
    while (b){
        if (b&1) ans=ans*w;
        w=w*w;
        b>>=1;
    }
    return ans;
}
int main(){
    scanf("%d%d%d%s",&n,&m,&p,s+1);
    fal[1]=0;
    for (int i=2,j=0;i<=m;i++){
        while (j&&s[j+1]!=s[i]) j=fal[j];
        if (s[j+1]==s[i]) j++;
        fal[i]=j;
    }
    A.n=A.m=m;
    for (int y=0;y<m;y++)
     for (char i='0';i<='9';i++){
        int j=y;
        while (j&&s[j+1]!=i) j=fal[j];
        if (s[j+1]==i) j++;
        if (j<m) A.s[j][y]++;
     }
    ans.n=m;ans.m=0;ans.s[0][0]=1;
    ans=power(A,n)*ans;
    int res=0;
    for (int i=0;i<m;i++) res=(res+ans.s[i][0])%p;
    printf("%d",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值