【矩阵乘法优化DP】BZOJ1875 [SDOI2009]HH去散步

题面在这里

典型的矩阵乘法优化DP

重点在于如何避免走回头路

如果记点为状态的话肯定不好搞

所以定义 fi,j 表示 走了i步,走到j这条边的终点 的方案数

若边i的终点与边j的起点相同,则 ft,i 可以转移到 ft+1,j

由此构造转移矩阵

示例程序:

#include<cstdio>
#include<cstring>
#define cl(x,y) memset(x,y,sizeof(x))

const int maxe=125,tt=45989;
int n,m,k,S,T,ans;
struct data{
    int s,t,id;
    data () {}
    data (int _s,int _t,int _id):s(_s),t(_t),id(_id) {}
}edge[maxe];
struct matrix{
    int n,m,s[maxe][maxe];
}t,a,res;
matrix operator*(const matrix&a,const matrix&b){
    matrix c;cl(c.s,0);
    c.n=a.n;c.m=b.m;
    for (int i=1;i<=c.n;i++)
     for (int j=1;j<=c.m;j++)
      for (int k=1;k<=a.m;k++)
       (c.s[i][j]+=a.s[i][k]*b.s[k][j]%tt)%=tt;
    return c;
}
matrix power(matrix a,int b){
    matrix w=a,ans;
    ans.n=ans.m=m;cl(ans.s,0);
    for (int i=1;i<=m;i++) ans.s[i][i]=1;
    while (b){
        if (b&1) ans=ans*w;
        w=w*w;
        b>>=1;
    }
    return ans;
}
int main(){
    scanf("%d%d%d%d%d",&n,&m,&k,&S,&T);
    for (int i=1;i<=m;i++){
        int x,y;scanf("%d%d",&x,&y);
        edge[i*2-1]=data(x,y,i);edge[i*2]=data(y,x,i);
    }m<<=1;
    t.n=t.m=m;
    for (int i=1;i<=m;i++)
     for (int j=1;j<=m;j++)
      if (edge[i].id!=edge[j].id)
       if (edge[i].t==edge[j].s) t.s[j][i]++;
    a.n=m;a.m=1;
    for (int i=1;i<=m;i++)
     if (edge[i].s==S) a.s[i][1]=1;
    res=power(t,k-1)*a;
    for (int i=1;i<=m;i++)
     if (edge[i].t==T) (ans+=res.s[i][1])%=tt;
    printf("%d",ans);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值