其实非常简单:
发现恰有need条边很难控制,但是边的优先级很好控制
所以考虑给每个白色边加上某个权值
使得求最小生成树时刚好取了need条边
然后发现这个加上的权值与白色边的条数刚好满足单调
所以直接二分加上的权值就好了
示例程序:
#include<cstdio>
#include<algorithm>
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int red(){
int res=0,f=1;char ch=nc();
while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();}
while ('0'<=ch&&ch<='9') res=(res<<3)+(res<<1)+ch-48,ch=nc();
return res*f;
}
const int maxn=50005,maxe=100005;
int n,e,ned,ans,fa[maxn];
struct edge{
int x,y,w,t;
bool operator<(const edge&b)const{
return w<b.w;
}
}a[maxe];
int getfa(int x){
return fa[x]==x?x:fa[x]=getfa(fa[x]);
}
bool check(int de){
for (int i=1;i<=e;i++)
if (!a[i].t) a[i].w+=de;
sort(a+1,a+1+e);
for (int i=1;i<=n;i++) fa[i]=i;
int tot=0,white=0,res=0;
for (int i=1;i<=e&&tot<n-1;i++){
if (getfa(a[i].x)==getfa(a[i].y)) continue;
fa[getfa(a[i].x)]=getfa(a[i].y);
tot++;if (!a[i].t) white++;
res+=a[i].w;
}
for (int i=1;i<=e;i++)
if (!a[i].t) a[i].w-=de;
if (white>=ned) ans=min(ans,res-white*de);
return white>=ned;
}
int main(){
n=red(),e=red(),ned=red();
for (int i=1;i<=e;i++)
a[i].x=red()+1,a[i].y=red()+1,a[i].w=red(),a[i].t=red();
int L=-100,R=100;ans=0x3f3f3f3f;
while (L<=R){
int mid=L+R>>1;
if (check(mid)) L=mid+1;else R=mid-1;
}
printf("%d",ans);
return 0;
}