问题描述:
给定一耳光数组a[N],我们希望构造数组b [N],其中b[j]=a[0]*a[1]…a[N-1] / a[j],在构造过程中,不允许使用除法:
要求O(1)空间复杂度和O(n)的时间复杂度;
除遍历计数器与a[N] b[N]外,不可使用新的变量(包括栈临时变量、堆空间和全局静态变量等);
青铜程序(主流编程语言任选)实现并简单描述。
这道题和编程之美上一道题很相似,编程之美上是求子数组的元素的最大乘积。不追究谁是谁的改编题了。值得注意的是一道题的变形可以有很多种。不可能把所有题都做过,只能以变应变。
解法:设有数组a[N],用s[i]表示数组a[N]的前i-1个元素的乘积,用t[i]表示数组a[N]的后N-i-1个元素的乘积,那么p[i]=s[i]*t[i],即b[i]=p[i]。如此便抛弃了除法求出了我们想要的结果。
但有空间O(1)和时间O(N)的枷锁。可以分三个循环来打开这个枷锁。
1、一个for循环求出s[i],且把结果存到b[i]里。那么使用o(n)得到了s[i]。
2、再来个for循环求出t[i],且把结果存到a[i+1]里,那么使用o(n)得到了t[i].
3、最后一个for循环求出p[i],结构存到b[i]里。问题解决。
程序的时间还是O(N)。也没有使用超限的空间。
程序代码
void TestFun(int* a,int* b,int n)
{
//求出s[i],s[i]存在b[i];
int i=0;
for(i=0;i<n;i++)
{
if(i==0)
{
//这里把s[0]设为1方便相乘求p[0];
b[i]=1;
}
else
{
b[i]=a[i-1]*b[i-1];
}
}
//求出t[i],t[i]存在a[i];
for(i=n-2;i>=0;i--)
{
if(i==n-2)
{
a[i+1]=a[i+1];
}
else
{
a[i+1]=a[i+2]*a[i+1];
}
}
//求出p[i],即b[i]
for(i=0;i<n;i++)
{
if(i!=n-1)
{
b[i]=a[i+1]*b[i];
}
}
}