EM算法主观理解

一句话: EM算法的精华在于 EM——期望最大化,把一个不好MLE的问题用迭代方法解决掉,思路清晰,计算简单。

首先,明确我们的目标是什么:那就是要求解一个最大似然估计问题。

所谓的最大似然估计问题就是——给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。

如果你还是对最大似然估计不了解,那么你可以参看如下的资料:

最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。(维基百科)

好了,现在咱们继续下面的问题:假如我们要求解的最大似然估计问题中存在着未知的隐含变量,那么我们又该如何求解这个最大似然估计问题呢??

而这也就是应用到EM算法的时候了。

——EM算法是一种解决隐含变量优化问题的有效方法!


比如:给定训练样本{x1 - xm},想找到每个样例隐含类别z,能使p(x,z)最大,p(x,z)的最大似然估计如下:


在原本的最大似然估计当中,我们是通过求偏导来求解theta的。但是,现在我们多了一个未知量z,那么就无法通过求偏导的方法得到theta的最优值。

那么对这个问题我们该怎么办呢??

一个办法:通过EM算法解决!这也就体现出EM算法的高超技艺

——因为无法求解得出L(theta)的最优(大)值,那么就通过不断地构造下界,然后再通过优化下界的方法来逐步逼近下界极大值,简单的说就是:当不能得到一个函数的最大值时,我们就可以通过不断地构建这个函数的下界,来一步步迭代地逼近最大值。

关于EM算法的数学推导,详见文献[1]。


参考文献:

[1] JerryLead (EM算法)The EM Algorithm   首席推荐tutorial(非正规版)

[2] Stanford ML 第12课K-Means中段到第13课首段  和[1]的内容一样,不过有一些细微的讲解(学生提问)可以解惑


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值