leetcode——第46题——全排列

这篇博客探讨了如何使用回溯算法解决全排列问题。通过一个C++类`Solution`展示了如何实现一个递归的backtracking函数,该函数在给定无重复数字的序列上生成所有可能的排列组合。在遍历过程中,使用`used`数组记录已使用的元素,确保不重复,并在找到一组排列后将其添加到结果集中。
摘要由CSDN通过智能技术生成

题目:
给定一个 没有重复 数字的序列,返回其所有可能的全排列。

class Solution {
/*
与之前不同,for 循环中就不用 startIndex 了,因为排列问题,每一次都要从头开始搜索
需要用 used 数组来记录 path 中都放了哪些元素

vector 在定义的时候初始化,这个自己也是不太会写的点呢
*/
private:
    vector<int> path;
    vector<vector<int>> result;
    void backtracking(vector<int>& nums, vector<bool>& used)
    {
        // 终止条件满足的时候, path 中的元素个数 等于 数组本身的长度时,此时说明找到了一组
        if(path.size() == nums.size())
        {
            result.push_back(path);
            return;
        }
        for(int i = 0; i < nums.size(); i++)
        {
            // path 里已经收录了的元素,直接跳过
            if(used[i] == true) continue;
            used[i] = true;     // used中对应元素更新一下
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();    // 回溯
            used[i] = false;    // 回溯
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) 
    {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值