题目:
给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True
说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/partition-to-k-equal-sum-subsets
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
/*
这题用全排列的话,时间复杂度就是 O(n!) 其中n=nums.size()
所以就是从 n! 这里考虑优化的问题,利用 二进制位进行优化,将时间复杂度降为 O(k*2^n)
感觉这道题是 类似于 有重复元素的组合问题
1、为什么要进行移位运算呢?
当移位次数为8或16时则可能获得最大的效率。
当乘数比较大,移位次数增多,程序会采用循环的逐位移动,这样的效率反而不高。
但是~但是~这里采用n位二进制进行进行计算,并不是考虑到效率问题,而是采用 0 或 1 便于标记是否使用过该元素
将二维数组这么设定,可以直接进行为二进制的移位运算,而无序利用标记数组的形式来标定是否使用过该元素
此时就不考虑他的十进制是多少,只需要考虑二进制的表示,
但是位运算是有上限的,一般 n=20 以下这么用,
想来想去,感觉就是相当于组合问题呢。
2、关于时间复杂度
感觉还是 for 循环要走 n 步,for循环里面的 backtrack 函数要走 n 步,for 循环外面还有一个 backtrack 要走 k,
所以时间复杂度就是 O(k*2^n)
那个 for 的运行实际上还是要走 backtrack。
3、回溯 + dp
*/
public:
bool canPartitionKSubsets(vector<int>& nums, int k)
{
int sum = accumulate(nums.begin(), nums.end(), 0);
if(sum % k != 0) return false;
target = sum / k;
// 这里定义为 1 << nums.size() 的形式,令 n = nums.size()
// 其的十进制是 2^n ,二进制就是 第 n 位是1 ,其余为 0 的一串 二进制数,
// 注意这里是从 0 开始数的。
memo = vector<vector<int>>(k+ 1, vector<int>(1 << nums.size(), -1));
return backtrack(nums, 0, k, 0);
}
private:
int target = 0;
vector<vector<int>> memo;
bool backtrack(vector<int>& nums, int state, int k, int sum)
{
// 有两次回溯,所以在计算时间复杂度时要注意。
if(k == 0) return true;
if(sum > target) return false;
if(sum == target) return backtrack(nums, state, k - 1, 0);
if(memo[k][state] >= 0) return memo[k][state];
bool res = false;
for(int i = 0; i < nums.size(); ++i)
{
if(nums[i] > target) return false;
if(state & 1 << i) continue;
res |= backtrack(nums, state | 1 << i, k, sum + nums[i]);
}
return memo[k][state] = res;
}
};