LeetCode每日一题——698. 划分为k个相等的子集

LeetCode每日一题系列

题目:698. 划分为k个相等的子集
难度:中等



题目

给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。

示例

示例 1:

输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True 说
明: 有可能将其分成 4个子集(5),(1,4),(2,3),(2,3)等于总和。

示例 2:

输入: nums = [1,2,3,4], k = 3
输出: false

提示:

1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
每个元素的频率在 [1,4] 范围内

思路

借鉴了官方题解的思路

状态压缩+记忆化搜索,其实就是利用DFS填k个桶,每层都检查一下所有的数哪些没有用,没有使用过就尝试填入当前的桶。由于最多只有16个数,所以可以用一个整型来表示各个数字的使用状态,1表示当前数字已经填过,0表示当前数还未被使用。

题解

class Solution:
    def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
        all = sum(nums)
        if all % k:
            return False
        per = all // k
        nums.sort()  # 方便下面剪枝
        if nums[-1] > per:
            return False
        n = len(nums)

        @cache
        def dfs(s, p):
            if s == 0:
                return True
            for i in range(n):
                if nums[i] + p > per:
                    break
                if s >> i & 1 and dfs(s ^ (1 << i), (p + nums[i]) % per):  # p + nums[i] 等于 per 时置为 0
                    return True
            return False
        return dfs((1 << n) - 1, 0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hyk今天写算法了吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值