题目:
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
class Solution {
/*
动态规划五部曲:
* 1、确定 dp 数组以及下标的含义
* dp[i] [j],第i天状态为j,所剩的最多现金为dp[i] [j]。
* j = 0 :持有股票状态 :分为今天买入,和之前买入
* j = 1 :不持有股票状态1:分为两天前已经将股票卖出,处于可以操作股票状态
* j = 2 :不持有股票状态2:今天卖出,处于不能操作股票状态
* j = 3 :不持有股票状态3:冷冻期状态,注意这个状态仅保持一天,也就是前一天卖出股票,处于不能操作股票状态
* 如果把状态2和状态4合并为一个状态,分成三个状态来进行分析的话,那就会比较模糊了,从代码上讲可以合并,但是比较难理解。
* 2、确定递推公式
* 对于 dp[i] [0] = max(dp[i - 1] [0], **max(dp[i - 1] [3], dp[i - 1] [1])** - prices[i])
* 操作一:dp[i] [0] = dp[i - 1] [0],前一天已经是持有股票状态,今天保持就好
* 操作二:前一天是 j = 1 状态,且今天买入
* 操作三:前一天是 j = 3 状态,且今天买入
* 因此对于买入状态,需要先求出 dp[i - 1] [3] 和 dp[i - 1] [1] 的最大值,在减去 prices[i] ,最终与操作一相比取最大值
* 对于 dp[i] [1] = max(dp[i - 1] [1], dp[i - 1] [3]);
* 操作一:前一天是 j = 2 状态
* 操作二:前一天是 j = 4 状态
* 对于 dp[i] [2] = dp[i - 1] [0] + prices[i]
* 此时只有这一种操作。
* 对于 dp[i] [3] = dp[i - 1] [2]
* 此时也只有这一种操作
* 3、dp 数组如何初始化
* dp[0] [0] = -prices[0],其余三个状态下对应的为 0
* 4、确定遍历顺序
* 一定是从前往后啦~~
时间复杂度:O(n)
空间复杂度:O(n)
*/
public:
int maxProfit(vector<int>& prices)
{
vector<vector<int>> dp(prices.size(), vector<int>(4, 0));
dp[0][0] = -prices[0];
for(int i = 1; i < prices.size(); ++i)
{
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1], dp[i - 1][3]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
return max(dp[prices.size() - 1][3], max(dp[prices.size() - 1][1], dp[prices.size() - 1][2]));
}
};