一个序列(字符串)S=a1a2...an 的倒置 S' 为 anan-1...a1。而 S 的子串定义为 S 中任何连续的一部分,如 aiai+1...aj 是 S 的一个子串,但aiai+2... 则不是 S 的子串。如果一个序列 S=S',则 S 称为回文序列。本文接下来将研究一个有趣的问题:给定一个序列 S,找出 S 中最长的回文子串。
在详细分析各个算法之前,先给出一个概览:简单的暴力算法时间复杂度为 Ɵ(n3)。经过仔细分析,可以通过动态规划把复杂度降至 O(n2)。但是,令人兴奋的是,存在线性复杂度,即 O(n) 的算法!
一、暴力算法
按照惯例,先分析一下暴力的算法:对 S 的每个子串,先判断其是否为回文,如果是,则跟已知的最长回文子串相比较,并保存其中最长的那个。
长度为 n 的字符串一共有 O(n2) 个子串,判断一个子串是否为回文串平均需要 O(n) 时间,因此,该算法的复杂度为 O(n3) 。当然,可以在算法中加入剪枝,例如,当子串 P 的长度比已知最长回文子串的长度小时,可以不必进行检查是否为回文串了。但这个并不能带来时间复杂度上质的变化。
二、动态规划
仔细分析该暴力算法,可以发现,该算法中存在很多重复计算。例如,当子串 P 不是回文时,xPy 也不可能是回文。再如,子串 xPx 是否为回文当且仅当 P 是回文。这后面的例子有点动态规划的味道了。沿着这个方向,可以比较容易的设计出动态规划的算法。首先,用 LP[i][j] 表示子串 aiai+1...aj 是否为回文。则
LP[i][j] = true,如果 i >= j,即单字符的串和空串都是回文;
LP[i][j] = true,如果 S[i] = S[j] 并且 LP[i+1][j-1] = true;
否则,LP[i][j] = false。
在填动态规划表时,按子串的长度从小到大进行。