24、树莓派硬件拓展与配置指南

树莓派硬件拓展与配置指南

1. 手柄数据处理代码分析

在对特定设备进行数据处理时,有一段关键的代码实现了从设备寄存器信息中提取相关信息的功能。以下是这段代码:

0141:   data->stick_y = data->raw[1];
0142:   data->accel_x = data->raw[2] << 2;
0143:   data->accel_y = data->raw[3] << 2;
0144:   data->accel_z = data->raw[4] << 2;
0145:
0146:   t = data->raw[5];
0147:   data->z_button = t & 1 ? 0 : 1;
0148:   data->c_button = t & 2 ? 0 : 1;
0149:   t >>= 2;
0150:   data->accel_x |= t & 3;
0151:   t >>= 2;
0152:   data->accel_y |= t & 3;
0153:   t >>= 2;
0154:   data->accel_z |= t & 3;
0155:   return 0;
0156: }

这段代码的具体功能如下:
- 第 0141 行:将设备原始数据数组 raw 中的第 1 个元素赋值给 stick_y <

Kriging_NSGA3_Topsis克里金预测模型做代理模型多目标遗传3代结合熵权法反求最佳因变量及自变量(Matlab代码实现)内容概要:本文介绍了基于克里金(Kriging)代理模型、多目标遗传算法NSGA-III和TOPSIS决策方法相结合的技术路线,用于反求最优的因变量及对应的自变量组合。该方法首先利用克里金模型对复杂系统进行近似建模,降低计算成本;随后通过NSGA-III算法进行三代多目标优化,获得帕累托前沿解集;最后结合熵权法确定各目标权重,并使用TOPSIS方法从解集中筛选出最接近理想解的最佳方案。整个流程在Matlab平台上实现,适用于工程优化中高耗时仿真模型的替代多目标折衷分析。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及从事工程优化设计的工程师;熟悉代理模型、遗传算法多属性决策方法的学习者优先。; 使用场景及目标:①解决计算昂贵的多目标优化问题,如结构设计、能源系统参数优化等;②掌握克里金代理模型构建、NSGA-III算法应用及熵权-TOPSIS集成决策的全流程实现;③复现高水平学术论文中的优化方法,提升科研创新能力。; 阅读建议:建议读者结合提供的Matlab代码逐步调试运行,理解每一步的数据流向算法逻辑,重点关注代理模型精度验证、NSGA-III参数设置及熵权法权重计算过程,以实现对整体方法的深入掌握灵活应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值