83、利手与概率独立性的研究探索

利手与概率独立性的研究探索

1. 利手对心理旋转的影响

空间可视化和心理旋转是人类视觉空间能力的核心组成部分。过往研究虽对策略、性别、年龄以及视觉场中旋转刺激的属性等因素在心理旋转任务中的作用有所关注,但对于利手在旋转任务中的影响研究较少,且相关结论存在争议。

本次研究选取了89名年龄在19 - 33岁的受试者,其中44名右利手和45名左利手,无优势手的受试者被排除在外。研究将受试者分为两组进行右手测试(R - test)和左手测试(L - test),使用从相关研究中改编的2 - D和3 - D图形作为刺激材料,通过计算机程序随机呈现不同角度(0°、60°、120°和180°)的图形,每个图形在一次测试中随机呈现三次。

测试流程如下:
1. 受试者坐在距离计算机屏幕60 - 65厘米处,将左右食指放在键盘按钮上。
2. 右利手组分别进行右手测试和左手测试,右手测试时用右手回答屏幕上相似图形,用左手回答不同图形;左手测试时用左手对相似图形做出反应。
3. 左利手组采用相同的测试流程。
4. 为避免学习效应,同一受试者不参与两种测试条件。
5. 程序记录每个图形的响应时间以及正确和错误答案。

在数据分析方面,采用非参数统计方法。使用Mann - Whitney U检验比较所有正确识别图形对的平均响应时间以及右利手和左利手之间的结果差异;使用Kruskal - Wallis检验比较四个方向(0°、60°、120°和180°)之间的差异。

研究结果表明:
- 所有测试中,响应时间随旋转角度的增加而增加(p < 0.0001)。
- 右利手在右手测试中的响应时间比左手测试短

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值