
Python最全面试题-从入门到Offer
文章平均质量分 91
17年+码农经历了很多次面试,多次作为面试官面试别人,深知哪些面试题是会被经常问到,熟背八股文和总结好自己项目经验,将让你在面试更容易拿到Offer。和大厂朋友共同长期更新面试题,分享面试技巧和推荐Python的就业机会,不定时在线答疑。还有多年的实践经验技巧、代码待更新,早订阅早受益。
大模型大数据攻城狮
在阿里巴巴等多种类型公司工作过,第一份工作是在大厂做移动开发,后来在创业公司由于团队需要做后台开发、嵌入式开发等几乎全栈开发,最近这些年还保持必要全栈开发,精力更多在大数据、大模型等领域。
展开
-
Python如何在高并发场景中合理使用协程(async/await)
协程作为Python高并发编程的重要工具,凭借其轻量级和高效的特点,为I/O密集型任务提供了理想的解决方案。通过`async/await`语法,开发者能够以简洁的方式编写异步代码,而事件循环则在背后默默协调任务的执行。无论是简单的脚本还是复杂的Web应用,掌握协程的基本原理和用法,都能显著提升程序的性能和可维护性。对于初学者而言,建议从小型项目入手,例如编写一个异步爬虫或简单的API客户端,逐步熟悉`async/await`的用法和事件循环的调度机制。原创 2025-04-25 00:19:24 · 616 阅读 · 0 评论 -
Python如何做接口限流、防刷保护
在实际开发中,限流和防刷的实现方法多种多样,开发者需要根据业务场景选择合适的策略。对于限流,常见的算法包括固定窗口、滑动窗口、漏桶和令牌桶等。每种算法都有其适用场景,例如令牌桶适合处理突发流量,而漏桶则更适合平滑请求速率。算法名称核心原理优点缺点适用场景固定窗口在固定时间窗口内限制请求数量实现简单,易于理解窗口边界可能导致流量突增请求量较平稳的场景滑动窗口动态计算过去一段时间内的请求数量精确控制,平滑处理流量实现复杂,存储开销较大对精度要求较高的场景漏桶算法。原创 2025-04-24 00:18:24 · 229 阅读 · 0 评论 -
如何解决Python2与Python3的兼容问题
对于复杂的项目,可能需要为不同Python版本指定不同的依赖版本,或者根据版本设置特定的环境变量。`tox`支持细粒度的配置,例如:deps =setenv =deps =通过这种方式,可以为Python 2.7环境安装较旧版本的`pytest`和兼容性库`six`,同时忽略某些警告,而为Python 3.9环境选择更新的依赖版本。这种灵活性非常适合处理迁移过程中依赖库兼容性的细微差异。原创 2025-04-23 00:03:34 · 334 阅读 · 0 评论 -
如何在Python中实现多语言支持(i18n)
综上所述,Python提供了多种i18n工具和库,满足了从简单翻译到全面本地化的不同需求。`gettext`以其简洁性和内置支持奠定了基础,而`Babel`则以全面性和现代化特性成为主流选择。新兴工具如`Fluent`虽然尚未普及,但展现了未来发展的可能性。理解这些工具的特性和工作原理,不仅能帮助开发者做出合适的选择,还能在后续实现中游刃有余。接下来的内容将基于这些工具,深入探讨具体的实现步骤和最佳实践,为构建多语言应用提供更具操作性的指导。原创 2025-04-22 00:05:26 · 536 阅读 · 0 评论 -
Python服务如何进行热更新、无中断重启
热更新,顾名思义,是指在不中断服务运行的情况下,对系统代码或配置进行实时更新的技术。这种方法允许开发者在服务进程持续运行的同时,将新的代码逻辑或资源文件应用到系统中,而无需停止服务或断开用户连接。热更新的核心目标在于最小化对用户体验的影响,尤其是在需要频繁发布新功能或修复紧急Bug的场景中。从技术角度来看,热更新通常依赖于运行时环境的动态特性。原创 2025-04-20 00:10:13 · 386 阅读 · 0 评论 -
Python中如何加密/解密敏感信息(如用户密码、token)
敏感信息,如用户密码、API密钥、访问令牌(token)、信用卡号以及其他个人身份信息(PII),构成了现代应用程序和系统中最为关键的部分。这些信息一旦被未经授权的第三方获取,可能引发灾难性的后果,从个人隐私泄露到企业经济损失,甚至是大规模的社会安全问题。保护这些敏感信息免受威胁,已不再是一个可选项,而是技术开发者和企业必须优先考虑的核心任务。敏感信息的定义可以理解为任何在未经授权访问时可能对个人或组织造成损害的数据。用户密码是典型代表,它是用户身份验证的基石,直接关联到账户安全。原创 2025-04-18 00:00:26 · 857 阅读 · 0 评论 -
百万级WebSocket长连接管理:用asyncio打造高性能实时系统
WebSocket的长连接特性让实时通信变得高效而优雅,但当连接数量达到百万级时,挑战也随之而来:如何确保低延迟、高吞吐,同时保持系统稳定?Python的库以其异步编程的强大能力,成为应对这一场景的利器。原创 2025-04-12 18:47:22 · 428 阅读 · 0 评论 -
分布式锁在秒杀场景中的Python实现与CAP权衡
从分布式锁的原理到 Python 实战,再到 CAP 权衡与性能优化,核心在于平衡技术选型:Redis 快但弱一致,ZooKeeper 稳但性能受限,数据库适合轻量场景;性能优化:细粒度锁、动态策略、合理超时与重试是高并发关键;业务落地:库存防超卖靠原子操作,订单处理靠事务 + 异步。秒杀系统没有 “银弹”,需结合业务规模、成本与用户体验,灵活组合技术方案。未来随着流量增长,还可探索 Redis Cluster 分片、ZooKeeper 集群优化等进阶玩法,持续升级系统的 “战斗力”。原创 2025-04-11 20:35:39 · 440 阅读 · 0 评论 -
快手Python开发面经及参考答案
但是,由于 Python 的全局解释器锁(GIL)的存在,同一时间只有一个线程可以执行 Python 字节码,因此在 Python 中,线程在 CPU 密集型任务中的性能提升并不明显。那么,在一个原本的时钟周期内,处理器就可以启动三条指令的执行。同时,流水线级数的增加也会带来更大的分支预测错误代价,因为一旦分支预测错误,需要清空流水线中已经执行的部分指令,重新开始执行正确的指令序列。例如,一个线程正在读取一个变量的值,而另一个线程同时在修改这个变量的值,这样就可能会导致读取到的数据是错误的。原创 2025-04-06 07:31:57 · 366 阅读 · 0 评论 -
深信服Python开发面经及参考答案(110道题)
在 Python 中,元类是创建类的类。在 Python 里,一切皆对象,类也是对象,而元类就是用来创建这些类对象的。默认情况下,Python 使用type作为元类来创建类。当你定义一个类时,Python 会使用type元类来创建这个类对象。pass# 等价于在这个例子中,type元类接收三个参数:类的名称(字符串)、基类的元组和类的属性字典,然后返回一个新的类对象。除了使用默认的type元类,你还可以自定义元类。自定义元类可以通过继承type类来实现。原创 2025-04-05 00:10:41 · 543 阅读 · 0 评论 -
苏小研Python开发面经及参考答案
在 Python 中,类是一种自定义的数据类型,用于封装数据和方法。通过定义类,可以创建具有相同属性和行为的对象。使用class关键字来定义一个类,类名通常采用驼峰命名法。在这个示例中,Person是类名。__init__是一个特殊的方法,也称为构造方法,用于初始化对象的属性。self是一个约定俗成的参数名,代表类的实例对象本身。在__init__方法中,通过self.name和self.age来定义对象的属性。introduce是一个普通的方法,用于打印对象的信息。可变性。原创 2025-04-04 00:02:06 · 377 阅读 · 0 评论 -
分布式计算Ray框架面试题及参考答案
动态任务图执行引擎是一种能够根据任务之间的依赖关系和运行时的实际情况,动态构建和执行任务图的系统。在 Ray 中,动态任务图执行引擎允许任务在运行时根据数据可用性、计算资源状态等因素,灵活地决定后续任务的执行顺序和方式。对于 AI 应用来说,其往往具有动态性的特点。例如,在深度学习模型的训练过程中,可能需要根据训练的结果动态调整下一轮训练的参数、数据增强方式或者模型结构。动态任务图执行引擎可以很好地支持这些动态需求。它能够根据 AI 应用中各个任务的实时输出和依赖关系,动态地生成和调整任务图。原创 2025-04-01 00:04:33 · 565 阅读 · 0 评论 -
Python SciPy面试题及参考答案
SciPy 是一个用于数学、科学和工程计算的 Python 开源库,它构建于 NumPy 之上,提供了大量的科学计算工具和算法。SciPy 库涵盖了诸如优化、积分、插值、特征值问题、常微分方程求解、信号处理等多个领域的功能。NumPy 则是 Python 科学计算的基础库,主要提供了多维数组对象以及对这些数组进行快速操作的函数。NumPy 的核心是 ndarray 对象,它支持高效的数值计算,包括基本的数学运算、索引、切片等。原创 2025-03-27 00:04:53 · 499 阅读 · 0 评论 -
Python Sanic面试题及参考答案
如果不想使用第三方库,也可以自定义实现请求速率限制。可以使用 Python 的asyncio和time模块来记录每个客户端的请求时间和请求次数。limit = 5 # 限制次数period = 30 # 时间周期(秒)else:else:')在这个示例中,使用字典来记录每个客户端的请求次数和请求开始时间。在请求前中间件中,根据当前时间和请求开始时间计算时间间隔,如果超过了设定的时间周期,则重置请求次数;如果请求次数超过了限制,则返回 429 状态码,表示请求速率超过了限制。原创 2025-03-26 00:01:45 · 492 阅读 · 0 评论 -
Python FastAPI 面试题及参考答案
FastAPI 的路由机制是其核心功能之一,用于将不同的 URL 路径映射到相应的处理函数。通过定义路由,可以构建出功能丰富的 API。在 FastAPI 中,使用装饰器来定义路由。在这个示例中,是一个装饰器,它将根路径"/"的 GET 请求映射到read_root函数。当客户端发送一个 GET 请求到根路径时,FastAPI 会调用read_root函数并返回结果。原创 2025-03-25 00:03:05 · 565 阅读 · 0 评论 -
PyTorch 面试题及参考答案(精选100道)
模块是 PyTorch 中用于自动求导的核心模块。它为张量上的所有操作提供了自动求导的功能。在深度学习中,反向传播是一种用于计算损失函数相对于模型参数的梯度的算法。通过梯度,我们可以使用优化算法(如随机梯度下降)来更新模型的参数,从而最小化损失函数。模块的主要作用就是自动计算这些梯度。当我们创建一个张量时,如果将其属性设置为True,那么 PyTorch 会跟踪该张量上的所有操作。在完成前向传播计算出损失函数后,调用方法,模块会自动根据链式法则反向传播计算出所有需要求导的张量的梯度。原创 2025-03-24 00:05:50 · 727 阅读 · 0 评论 -
TensorFlow面试题及参考答案
TensorFlow 的计算图是一种用于表示计算任务的有向图,它以图形化的方式描述了数学运算之间的依赖关系和执行顺序。这种抽象的表示方式使得 TensorFlow 能够高效地管理和执行复杂的计算任务,尤其适用于大规模的深度学习模型。计算图主要由节点(Nodes)、边(Edges)和会话(Session)三部分组成。节点代表了计算操作,它们是计算图中的基本计算单元。每个节点可以表示一个简单的数学运算,如加法、乘法,也可以表示一个复杂的神经网络层,如卷积层、全连接层。原创 2025-03-23 00:11:32 · 768 阅读 · 0 评论 -
Python FastAPI面试题及参考答案
FastAPI 的路由机制是其核心功能之一,用于将不同的 URL 路径映射到相应的处理函数。通过定义路由,可以构建出功能丰富的 API。在 FastAPI 中,使用装饰器来定义路由。在这个示例中,是一个装饰器,它将根路径"/"的 GET 请求映射到read_root函数。当客户端发送一个 GET 请求到根路径时,FastAPI 会调用read_root函数并返回结果。原创 2025-03-22 12:49:38 · 665 阅读 · 0 评论 -
Python Seaborn面试题及参考答案
在 Seaborn 的分类图里,可借助order和hue_order参数自定义分类顺序。order参数用于控制x轴或y轴上分类变量的顺序,hue_order参数则用于控制hue分组的顺序。假设要绘制一个展示不同城市房价的柱状图,期望按照特定顺序展示城市。可使用order参数来指定城市的顺序。plt.show()在上述代码中,order参数指定了城市的顺序,这样绘制出的柱状图就会按照指定顺序展示不同城市的房价。若使用了hue参数进行分组,可通过hue_order参数自定义分组的顺序。原创 2025-03-21 00:01:08 · 689 阅读 · 0 评论 -
Python Pyecharts面试题及参考答案
为了绘制对比某品牌各季度销量与库存的柱状图,可借助 Pyecharts 库。首先,生成随机数据模拟各季度的销量和库存情况。接着,创建柱状图对象,将数据添加到图表中,并设置好主标题、副标题以及自定义颜色。# 生成随机数据seasons = ["第一季度", "第二季度", "第三季度", "第四季度"]# 创建柱状图bar = (Bar().add_yaxis("销量", sales, color="#5793f3")原创 2025-03-20 00:06:56 · 784 阅读 · 0 评论 -
自动化测试Selenium面试题及参考答案
Headless 浏览器是一种没有图形用户界面(GUI)的浏览器,它在后台运行,不显示可视化的窗口。虽然没有可视化界面,但它具备普通浏览器的所有功能,能够加载网页、执行 JavaScript 代码、渲染页面等。使用 Headless 浏览器可以在不占用大量系统资源的情况下进行自动化测试、网页抓取、性能分析等任务。常见的 Headless 浏览器有 Chrome Headless、Firefox Headless 等。隐式等待是一种全局设置,通过方法设置。原创 2025-03-19 07:02:54 · 331 阅读 · 0 评论 -
Playwright面试题及参考答案
在 Playwright 中配置多浏览器的并行测试可以通过以下步骤实现。首先,使用测试框架(如 Mocha、Jest 等)来组织和运行测试用例。在测试文件中,引入 Playwright 的相关模块。然后,为每个浏览器类型创建一个独立的测试套件或测试用例集。例如,对于 Chromium,可以使用方法来启动 Chromium 浏览器实例,并在该实例上执行相关的测试操作。对于 Firefox 和 WebKit,分别使用和方法。为了实现并行测试,可以利用测试框架提供的并行执行功能。原创 2025-03-18 05:58:51 · 454 阅读 · 0 评论 -
Python Matplotlib面试题精选及参考答案
绘制带有误差线的折线图可以帮助我们直观地展示实验数据的不确定性。在matplotlib中,我们可以使用errorbar函数来实现。首先,导入必要的库,包括和numpy。然后,自定义实验数据和误差范围。接着,使用errorbar函数绘制带有误差线的折线图,该函数接受x轴数据、y轴数据和误差范围作为参数,并可以设置误差线的颜色、样式等属性。最后,添加标题和坐标轴标签,并显示图形。# 自定义实验数据# 自定义误差范围# 绘制带有误差线的折线图# 添加标题和标签# 显示图形plt.show()原创 2025-03-16 00:01:35 · 781 阅读 · 0 评论 -
Matplotlib 绘图从入门到精通:8000字喂饭级教程
本文介绍了 Python 绘图库 Matplotlib 的使用方法:环境配置:Windows 用户用 pip、macOS 用户用 Anaconda 安装,安装后通过导入模块并输出版本号验证。图像结构:核心组件为 Figure(画布)、Axes(绘图区域)、Axis(坐标轴)。通过代码展示了如何创建及组合它们来绘图。交互模式:能实时更新图形,通过 plt.ion ()、plt.ioff ()、plt.isinteractive () 控制,Jupyter 用户需安装 ipympl 包并启用。常用绘图:原创 2025-03-15 17:14:01 · 283 阅读 · 0 评论 -
Python Numpy面试题及参考答案
在 Numpy 中生成这样的自定义序列,可以通过多种方法来实现。一种常见的思路是利用 Numpy 的广播和重复操作。首先,我们可以使用。原创 2025-03-11 07:18:26 · 581 阅读 · 0 评论 -
Python asyncIO 面试题及参考答案 草
在 Python 中,正确定义一个协程函数需要使用async def关键字。协程函数是一种特殊的函数,它在执行过程中可以暂停和恢复,从而允许程序在等待 I/O 操作时执行其他任务。print("协程开始")print("协程结束")在上述代码中,是一个协程函数,使用async def关键字定义。函数内部使用了await关键字,它用于暂停协程的执行,直到等待的异步操作完成。直接调用协程函数并不会执行协程内部的代码,而是返回一个协程对象。原创 2025-03-10 00:01:55 · 709 阅读 · 0 评论 -
Python性能优化面试题及参考答案
Python 的内置函数(如sortedsum等)比自定义实现更快,主要有以下几个原因。首先,内置函数是用 C 语言实现的。Python 是一种解释型语言,其解释执行的过程会带来一定的开销。而内置函数是在 Python 解释器内部用 C 语言实现的,C 语言是一种编译型语言,其执行速度比 Python 快得多。例如,sorted函数使用了高效的排序算法(如 Timsort),并且在 C 语言层面进行了优化,能够快速地对数据进行排序。其次,内置函数经过了大量的优化和测试。原创 2025-03-09 07:14:04 · 641 阅读 · 0 评论 -
Python开发Scikit-learn面试题及参考答案
在处理数据时,缺失值是常见问题,会对模型性能产生不良影响。 是 模块中的一个强大工具,可高效处理缺失值。 提供了多种策略来填充缺失值,如 (均值)、(中位数)、(众数)和 (常量)。均值策略适用于数据分布较为均匀的情况,能保留数据的整体趋势;中位数策略对异常值不敏感,适合存在离群点的数据;众数策略常用于类别型数据;常量策略则允许用户指定一个固定值来填充缺失值。以下是使用 的具体步骤和代码示例:在上述代码中,首先导入 类和 库。然后创建一个包含缺失值的示例数据集。接着,实例化 对象,并将填充策原创 2025-03-07 00:06:41 · 407 阅读 · 0 评论 -
Python数据分析面试题及参考答案
在数据处理和分析中,分箱操作是将连续型数据转换为离散型数据的常用方法,pandas中的cut和qcut函数可实现这一功能。cut函数主要基于值的范围进行分箱。它允许我们指定分箱的边界,将数据划分为不同的区间。例如,我们有一组学生的考试成绩数据,想要将成绩划分为 “不及格”(0 - 59)、“及格”(60 - 79)、“良好”(80 - 89)和 “优秀”(90 - 100)四个等级。labels = ['不及格', '及格', '良好', '优秀']这里,bins参数指定了分箱的边界,labels。原创 2025-03-05 00:02:09 · 660 阅读 · 0 评论 -
Python 多线程和并发面试题及参考答案
通过继承类可以方便地自定义线程的行为。主要步骤是创建一个新的类,继承自,然后重写run方法,在run方法中定义线程要执行的具体任务。# 创建并启动线程# 等待线程结束在这个示例中,定义了一个名为MyThread的类,继承自。在__init__方法中,调用父类的构造函数并初始化线程的名称。重写的run方法中,定义了线程要执行的任务,这里是打印线程开始和结束的信息,并模拟一个 2 秒的任务。创建MyThread类的实例后,调用start方法启动线程,线程会自动执行run方法中的代码。最后,使用join。原创 2025-03-04 00:09:46 · 671 阅读 · 0 评论 -
Python开发简历优化指南,DeepSeek助您Python开发简历秒出彩
比如,完成了一个具有挑战性的 Python 项目、获得了行业内的技术认证(如 Python Institute 的 PCAP - Certified Associate in Python Programming 认证)、在技术论坛上发表了有影响力的文章(如在 Stack Overflow 上分享 Python 性能优化经验并获得高赞)等,都要及时记录下来,并在适当的时候更新到简历中,确保简历始终能反映自己最新的技术水平和成就。随着技术的不断发展和个人技能的提升,及时更新简历中的技术内容。原创 2025-03-03 07:21:36 · 496 阅读 · 0 评论 -
Python Tornado 框架面试题及参考答案
用于在处理请求时抛出 HTTP 错误。要将其与自定义错误页面结合,可以通过重写的方法来实现。当抛出HTTPError时,Tornado 会调用方法来处理错误。在方法中,可以根据错误的状态码和其他信息,返回自定义的错误页面。else:在这个示例中,的get方法抛出了一个 404 错误。方法根据错误的状态码判断是否为 404 错误,如果是,则渲染404.html页面;否则,调用父类的方法处理其他错误。Tornado 的和为自定义协议通信提供了强大的支持。可用于创建一个 TCP 服务器,而。原创 2025-03-02 14:30:30 · 678 阅读 · 0 评论 -
Python Scrapy爬虫面试题及参考答案
定义一个Item类来存储提取的数据。在 Scrapy 中,自定义 Downloader Middleware 实现代理 IP 动态切换,可增强爬虫的稳定性和隐蔽性。以下是具体步骤。首先要准备代理 IP 池。可以从代理 IP 提供商处获取代理 IP,或者使用开源的代理 IP 爬虫项目抓取免费代理 IP。将这些代理 IP 存储在一个列表或数据库中,形成代理 IP 池。接着创建自定义的 Downloader Middleware 类。在 Scrapy 项目中创建一个新的 Python 文件,例如。原创 2025-03-01 00:19:38 · 1301 阅读 · 0 评论 -
Python面向对象面试题及参考答案
面向对象编程(Object-Oriented Programming,OOP)是一种编程范式,它将数据和操作数据的方法封装在一起,形成对象。这种编程方式模拟了现实世界中事物的特征和行为,使得程序的结构更加清晰、易于维护和扩展。在面向对象编程中,对象是类的实例。类是一种抽象的概念,它定义了对象的属性和方法。属性是对象的特征,而方法是对象的行为。例如,我们可以定义一个 “汽车” 类,这个类包含了汽车的属性(如颜色、品牌、型号等)和方法(如启动、加速、刹车等)。原创 2025-02-28 00:02:16 · 560 阅读 · 0 评论 -
Python异常处理面试题及参考答案
在 Python 里,异常是程序运行时出现的错误状况。当程序执行过程中遇到无法处理的情况,就会抛出异常。例如,试图打开一个不存在的文件,或者进行不合法的数学运算(像除以零),都会触发相应的异常。Python 有很多内置异常类型,如等,每种异常都代表特定的错误情况。程序需要异常处理机制的原因有多个。首先,增强程序的健壮性。在实际应用中,程序会面临各种不可预测的情况,如用户输入错误、文件丢失、网络连接中断等。如果没有异常处理,程序遇到这些错误就会崩溃,给用户带来不好的体验。原创 2025-02-27 21:23:55 · 616 阅读 · 0 评论 -
Python开发 Flask框架面试题及参考答案
WSGI 即 Web Server Gateway Interface,是 Python 中定义的 Web 服务器和 Web 应用程序之间的标准接口。它的出现解决了不同 Web 服务器和 Web 应用程序之间兼容性的问题,使得开发者可以使用不同的 Web 服务器来运行自己的 Python Web 应用。WSGI 定义了两个角色:服务器端和应用程序端。服务器端负责接收客户端的 HTTP 请求,然后将请求信息传递给应用程序端;原创 2025-02-25 00:14:29 · 498 阅读 · 0 评论 -
Python开发Django面试题及参考答案
Django 允许开发者创建自定义的管理命令,这些命令可以在命令行中执行,用于执行一些特定的任务,如数据初始化、定时任务等。创建自定义管理命令的步骤如下:首先,需要在应用目录下创建一个management目录,然后在management目录下创建一个commands目录。例如,对于名为myappmyapp/admin.pyapps.pycommands/models.pytests.pyviews.py在文件中,需要定义一个继承自的类,并实现handle方法。在这个示例中,help。原创 2025-02-23 10:58:40 · 721 阅读 · 0 评论 -
PySpark面试题精选及参考答案(3万字长文)
PySpark是Apache Spark的Python API,它允许开发者使用Python语言来操作Spark框架,执行大数据处理和分析任务。PySpark作为Spark生态系统的一部分,继承了Spark的分布式计算能力,能够高效地处理大规模数据集。主要应用场景包括:对大量积累的数据进行批量处理和分析,例如日志数据分析、用户行为分析等。通过Spark Streaming进行实时数据流的处理,适用于实时监控系统、实时推荐系统等。原创 2024-05-22 22:27:30 · 828 阅读 · 0 评论 -
PySpark JDBC 读写 MySQL 数据库保姆级指南
通过上述步骤,您可以使用 PySpark 通过 JDBC 连接读写 MySQL 数据库。为了连接到 MySQL 数据库,您需要下载 MySQL 的 JDBC 驱动程序。在开始之前,确保您已经安装了 PySpark 和 MySQL 数据库,并且已经有一个 MySQL 数据库实例可供连接。下载后,确保 JDBC 驱动的 JAR 文件路径被添加到 PySpark 的类路径中。如果您的数据量很大,可以配置分区列和分区范围来并行读取数据。为了提高读写性能,您可以调整一些 JDBC 特定的配置选项。原创 2024-06-04 13:26:35 · 634 阅读 · 0 评论 -
Pyspark和Pandas语法差异和调试技巧(附总结出来直接用代码)
pandas有一些函数是pyspark没有等价的,例如pandas的向上填充、向下填充,pyspark没有函数有ffill的功能,需要自己用时间函数来实现,这时候需要进行严格单元测试,看pyspark是不是完全等价于pandas的实现。通过日志打印,有时不能看到全部结果,这时需要把中间过程写入到文件(根据需要进行分组排序后输出,然后Beyond。在Pandas中,我们可以轻松地处理不同的数据类型和缺失值。在pyspark,就没有可以直接用的,需要用时间窗口函数来实现。方法来更改列的数据类型,并使用。原创 2024-05-23 07:06:49 · 571 阅读 · 0 评论