2020.08.07【NOIP提高组】模拟:回文子序列 总结
Description
回文序列是指左右对称的序列。例如1 2 3 2 1是回文序列,但是1 2 3 2 2就不是。我们会给定一个 N × M N\times M N×M的矩阵,你需要从这个矩阵中找出一个 P × P P\times P P×P的子矩阵,使得这个子矩阵的每一列和每一行都是回文序列。
Input
第一行有两个正整数
N
,
M
N, M
N,M。
接下来是
N
N
N行,代表一个
N
×
M
N\times M
N×M的矩阵,矩阵的每个元素都是值不超过
31415926
31415926
31415926的正整数。
Output
输出符合条件的子矩阵的最大大小 P P P。
Sample Input
5 10
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 3 2 4 5 6 7 8
1 2 3 9 10 4 5 6 7 8
Sample Output
4
Data Constraint
对于
20
%
20\%
20%数据,
1
≤
N
,
M
≤
10
1\leq N,M\leq10
1≤N,M≤10;
对于所有数据,
1
≤
N
,
M
≤
300
1\leq N,M\leq300
1≤N,M≤300。
总结
比赛思路&正解: 直接暴力枚举矩形的左上角,加一些玄学优化,时间复杂度最慢为
O
(
n
5
)
O(n^5)
O(n5),还是过了。可以优化至
O
(
n
4
)
O(n^4)
O(n4),应该有更好的算法。
出题人良心。