Leetcode: 70. Climbing Stairs(Week1, Easy)

17 篇文章 1 订阅

注: 本文使用三种方法实现Fibonacci Sequence:递归法、非递归法、矩阵快速幂法


Leetcode 70
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.

  • 题意:

    • 本题描述的是一个爬楼梯问题,你需要n steps才能到达最高点,而每次你只能跨1~2个steps,问你有多少种到达最高点的走法?
  • 思路:

    • 假设我k次到达楼顶,那么当我完成第k-1次时,第k次有两种情况:1 steps or 2 steps ( 注:k与本题解题无关,定义它只是为了方便说明最后一次有1-steps和2-steps两种情况)。所以,假设n steps到达楼顶有F(n)种走法,那么显然F(n) = F(n-1)+F(n-2)。看到这个通项,立刻就反应过来,这道题考察的是斐波那契数列

    • 虽然通项出来了,还是要看看前几项。不难分析,F(1) = 1, F(2) = 2, F (3) = 3。这说明只用到斐波那契的一部分,即从斐波那契数列第二项开始,而不包含第一项。这一点在写代码是要注意。

  • 解题:

    • 递归写法,十分简练,但效率极低,显然会超时

    • 时间复杂度分析需要用到二阶常系数齐次差分方程相关知识看这里

      class Solution {
      public:
      int climbStairs(int n) {
      if (n == 0) return 1;
      if (n == 1) return 1;
      return climbStairs(n-1) + climbStairs(n-2);
      }
      };
    • 非递归写法,时间复杂度为O(n), 本题可以通过!

      class Solution {
      public:
      int climbStairs(int n) {
          //if (n == 0) return 1;
          //if (n == 1) return 1;
          //return climbStairs(n-1) + climbStairs(n-2);
          if (n == 1) return 1;
          int a[n+1];
          a[0] = 1;
          a[1] = 1;
          for (int i = 2; i <= n; i++) {
              a[i] = a[i-1] + a[i-2];
          }
          return a[n];
      }
      };

除了以上两种方法,斐波那契数列还可以通过矩阵快速幂法求解

  • 先谈谈快速幂(Fast Exponentiation)

    • 快速幂就是快速算底数的n次幂,时间复杂度O(log N)

    • 例如2^10, 常规计算需要9次乘法(2*2*2…*2),而使用快速幂,只需要2次。

    • 10的二进制表示:1010, 对应为2^3,2^2,2^1,2^0, 即有1的位对应2^3, 2^1

    • 2^10 = 2^8 * 2^2 = 2^(2^3) * 2^(2^1) 指数部分刚好对应10的二进制

    • 以上就是快速幂的核心思想,下面是我自己写的一个快速幂:

      /*
      2017/9/8: Fast_Exponentiation.cpp 快速幂
      原理:
      eg:10的二进制表示:1010, 对应为2^3,2^2,2^1,2^0
      2^10 = 2^8 * 2^2 = 2^(2^3) * 2^(2^1) 指数部分刚好对应10的二进制
       */
      
      # include <iostream>
      
      
      using namespace std;
      
      int main(void) {
          // base: 底
          // e: 幂
          // result: 计算结果
          int base, e; 
          int result = 1;
          int count = 0;
      
          cin >> base >> e;
      
          // 快速幂算法核心部分
          while(e) {
              if (e & 1) { // 判断最后一位是否为1
                  result = result * base;
              }
              base = base * base;
              e = e >> 1;
              count++;
          }
          cout << "The result is: " << result << endl;
          cout << "The num of the loop is " << count << endl;
          return 0;
      }
  • 斐波那契数列也可以快速幂的思想实现,只不过它的快速幂是用于矩阵,即矩阵快速幂算法,下面是我自己写的一个程序:

  • 这里写图片描述

    /*
    2017/9/8 Fibonacci.cpp
    思路:利用矩阵快速幂的思路解题
     */
    
    
    # include <iostream>
    
    
    # include <cstring>
    
    
    using namespace std;
    
    typedef long long ll;
    
    // 定义矩阵
    struct Matrix {
        ll m[2][2];
    };
    
    // 矩阵幂的底
    Matrix base = {0, 1, 1, 1};
    
    // 矩阵乘法
    Matrix multi(const Matrix& A, const Matrix&B) {
        Matrix result;
        memset(result.m, 0, sizeof(result));
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                for (int k = 0; k < 2; k++) {
                    result.m[i][j] += A.m[i][k]*B.m[k][j];
                }
            }
        }
        return result;
    }
    
    // 矩阵的N次方,矩阵快速幂的核心
    Matrix power(int N) {
        Matrix result = {1, 0, 0, 1};
        while(N) {
            if (N & 1) {
                result = multi(result, base);
    /*          for (int i = 0; i < 2; i++) {
                    cout << endl;
                    for (int j = 0; j < 2; j++) {
                        cout << result.m[i][j] << " ";
                    }
                }
    */
            }
            base = multi(base, base);
            N >>= 1;
        }
        return result;
    }
    
    // 计算,调用子函数
    ll calcu(int N) {
        if (N == 0) return 0;
        int e = N-1;
        Matrix p = power(e);
        ll result = p.m[1][0]*0 + p.m[1][1]*1;
        return result;
    }
    
    // 主函数
    int main(void) {
        int N;
        cin >> N;
    
        ll result;
        result = calcu(N);
    
        cout << "The result is " << result << endl;
        return 0;
    }

以上内容皆为本人观点,欢迎大家提出批评和指导,我们一起探讨!


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值