注: 本文使用三种方法实现Fibonacci Sequence:递归法、非递归法、矩阵快速幂法
Leetcode 70
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
题意:
- 本题描述的是一个爬楼梯问题,你需要n steps才能到达最高点,而每次你只能跨1~2个steps,问你有多少种到达最高点的走法?
思路:
假设我k次到达楼顶,那么当我完成第k-1次时,第k次有两种情况:1 steps or 2 steps ( 注:k与本题解题无关,定义它只是为了方便说明最后一次有1-steps和2-steps两种情况)。所以,假设n steps到达楼顶有F(n)种走法,那么显然F(n) = F(n-1)+F(n-2)。看到这个通项,立刻就反应过来,这道题考察的是斐波那契数列。
虽然通项出来了,还是要看看前几项。不难分析,F(1) = 1, F(2) = 2, F (3) = 3。这说明只用到斐波那契的一部分,即从斐波那契数列第二项开始,而不包含第一项。这一点在写代码是要注意。
解题:
递归写法,十分简练,但效率极低,显然会超时!
时间复杂度分析需要用到二阶常系数齐次差分方程相关知识,看这里
class Solution { public: int climbStairs(int n) { if (n == 0) return 1; if (n == 1) return 1; return climbStairs(n-1) + climbStairs(n-2); } };
非递归写法,时间复杂度为O(n), 本题可以通过!
class Solution { public: int climbStairs(int n) { //if (n == 0) return 1; //if (n == 1) return 1; //return climbStairs(n-1) + climbStairs(n-2); if (n == 1) return 1; int a[n+1]; a[0] = 1; a[1] = 1; for (int i = 2; i <= n; i++) { a[i] = a[i-1] + a[i-2]; } return a[n]; } };
除了以上两种方法,斐波那契数列还可以通过矩阵快速幂法求解。
先谈谈快速幂(Fast Exponentiation):
快速幂就是快速算底数的n次幂,时间复杂度O(log N)
例如2^10, 常规计算需要9次乘法(2*2*2…*2),而使用快速幂,只需要2次。
10的二进制表示:1010, 对应为2^3,2^2,2^1,2^0, 即有1的位对应2^3, 2^1
2^10 = 2^8 * 2^2 = 2^(2^3) * 2^(2^1) 指数部分刚好对应10的二进制
以上就是快速幂的核心思想,下面是我自己写的一个快速幂:
/* 2017/9/8: Fast_Exponentiation.cpp 快速幂 原理: eg:10的二进制表示:1010, 对应为2^3,2^2,2^1,2^0 2^10 = 2^8 * 2^2 = 2^(2^3) * 2^(2^1) 指数部分刚好对应10的二进制 */ # include <iostream> using namespace std; int main(void) { // base: 底 // e: 幂 // result: 计算结果 int base, e; int result = 1; int count = 0; cin >> base >> e; // 快速幂算法核心部分 while(e) { if (e & 1) { // 判断最后一位是否为1 result = result * base; } base = base * base; e = e >> 1; count++; } cout << "The result is: " << result << endl; cout << "The num of the loop is " << count << endl; return 0; }
斐波那契数列也可以快速幂的思想实现,只不过它的快速幂是用于矩阵,即矩阵快速幂算法,下面是我自己写的一个程序:
-
/* 2017/9/8 Fibonacci.cpp 思路:利用矩阵快速幂的思路解题 */ # include <iostream> # include <cstring> using namespace std; typedef long long ll; // 定义矩阵 struct Matrix { ll m[2][2]; }; // 矩阵幂的底 Matrix base = {0, 1, 1, 1}; // 矩阵乘法 Matrix multi(const Matrix& A, const Matrix&B) { Matrix result; memset(result.m, 0, sizeof(result)); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 2; k++) { result.m[i][j] += A.m[i][k]*B.m[k][j]; } } } return result; } // 矩阵的N次方,矩阵快速幂的核心 Matrix power(int N) { Matrix result = {1, 0, 0, 1}; while(N) { if (N & 1) { result = multi(result, base); /* for (int i = 0; i < 2; i++) { cout << endl; for (int j = 0; j < 2; j++) { cout << result.m[i][j] << " "; } } */ } base = multi(base, base); N >>= 1; } return result; } // 计算,调用子函数 ll calcu(int N) { if (N == 0) return 0; int e = N-1; Matrix p = power(e); ll result = p.m[1][0]*0 + p.m[1][1]*1; return result; } // 主函数 int main(void) { int N; cin >> N; ll result; result = calcu(N); cout << "The result is " << result << endl; return 0; }
以上内容皆为本人观点,欢迎大家提出批评和指导,我们一起探讨!