目标检测
文章平均质量分 94
linxid
现阿里巴巴算法工程师,原华为诺亚方舟实验室高级算法工程师,专注人工智能算法研究
展开
-
目标检测经典模型(二)--fast rcnn
相比于RCNN的改进:Fast RCNN将原始图片输入卷积网络中得到特征图,再使用建议框对特征图提取特征框,大大减少了计算量建议框大小不一,通过ROI池化层将特征框转化为相同大小;Fast RCNN里没有SVM分类器和回归器了,分类和预测框的位置通过卷积神经网络输出为了提高计算速度,网络最后使用SVD代替全连接层算法流程:输入一张图片,通过Selective Search得到候选建议框;将原始图片输入到CNN中得到特征图,并且根据建议框,得到候选框在特征图中对应的位置(ROI);使用R原创 2021-05-21 18:49:56 · 355 阅读 · 0 评论 -
目标检测经典模式(一)--RCNN
使用深度学习解决目标检测任务的简单方法:输入一张图片将图片分割成不同的区域认为每个区域是一张独立的图像将这些分割开的图像输入到CNN分类器中,对其进行分类,得到分类结果;小的区域得到相应的类别后,将这些区域组合起来便得到带有检测物体的原图ps:这种方法的问题:图片中的物体具有不同的长宽比和空间位置需要大量的区域才能覆盖这些目标,结果导致计算量很大物体的形状也会有所不同region-based CNN:RCNN核心思想:使用selective search在图片中得到候选区域。原创 2021-05-21 18:48:05 · 334 阅读 · 0 评论