自然语言处理(NLP)学习笔记
文章平均质量分 92
记录自然语言处理的学习历程
linxid
现阿里巴巴算法工程师,原华为诺亚方舟实验室高级算法工程师,专注人工智能算法研究
展开
-
情感分析:几乎包括你需要知道的所有(一)
1.情感分析教程:有一份几乎为所有人准备的情感分析教程,包括程序员,非程序员,营销人员,数据分析师,代理人,销售人员等等。 在本节中,我们将分享各种各样的教程,以便您可以找到适合自己的情绪分析。1.1 为程序员准备的情感分析教程:对于那些对代码和API很熟悉的人,您可以快速找到各种分步指南和资源。 Python是关于数据分析,机器学习和NLP(包括情感分析)教程的最常用编程语言,但...翻译 2018-09-14 22:19:13 · 29063 阅读 · 19 评论 -
情感分析:几乎包括你需要知道的所有(二)
情感分析是从书面或口头语言中,对特定主题,理解观点的自动过程。在世界上,我们每天生成2.5QB字节的数据,情感分析已成为理解这些数据的关键工具。 这使得公司能够获得关键的见解,并自动化各种流程。但是,它是如何实现的呢?有哪些不同的方法? 它需要注意什么,限制是什么? 你如何在业务中使用情感分析?接下来,您将找到这些问题的答案,以及您需要了解的,关于情感分析的所有内容。 无论你是经验丰富的...翻译 2018-10-28 21:35:24 · 25886 阅读 · 3 评论 -
AiChallenger比赛记录之样本不均衡
如何处理样本不均衡1.1 选择合适的评价指标:不要采用准确率(Accuracy);主流评估方法包括:ROC,Precision-Recall curve,F1;1.2若样本极度不均衡,可作为异常检测问题处理;数据挖掘中常见的『异常检测』算法有哪些?1.3 欠采样/过采样:一般操作就是,对于样本比较多的类别进行欠采样,对样本比较少的类别进行过采样。但是对于多分类问题,会比较麻烦,而...原创 2018-11-07 11:25:17 · 1793 阅读 · 0 评论 -
AI Challenger 细粒度用户评论情感分析 (baseline 0.62)
比赛官网:https://challenger.ai/competition/fsauor2018关于情感分析的详细介绍,请参阅我的前一篇文章:https://zhuanlan.zhihu.com/p/44580856先给大家提供一个baseline,线上大概0.62,还可以继续调参。多跑几次,简单融合可以继续提分。代码很简单,使用GPU运行快,修改文件路径既可很快复现。1.运行环境:系...原创 2018-09-18 21:42:24 · 16436 阅读 · 70 评论