行列式的性质
行列式与它的转置行列式相等

对换行列式的两行(列),行列式变号

推论:如果行列式有两行(列)完全相同,则此行列式等于0
证:把这两行兑换,有D=-D,故此行列式等于0
行列式的某一行(列)中所有的元素都乘同一数,等于用数k乘此行列式
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面

4.行列式中如果有两行(列)元素成比例,则此行列式等于0
性质4 由下面2个性质推理得到:
性质3 行列式的某一行(列)中所有的元素都乘同一数,等于用数k乘此行列式
如:第一行/第二行=2,第二行*2=第一行,两行相同,则此行列式等于0
推论 如果行列式有两行(列)完全相同,则此行列式等于0
5.若行列式的某一行(列)的元素都是两数之和,例如第i行的元素都是两数之和

则D等于下列两个行列式之和:
