介绍
插入排序(Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
插入排序最好情况就是,序列已经是有序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是逆序排列,那么此时需要进行的比较共有n(n-1)/2次。
插入排序不适合对于数据量比较大的排序应用,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。
具体算法描述
- 从第一个元素开始,该元素可以认为已经被排序
- 取出下一个元素,在已经排序的元素序列中从后向前扫描
- 如果该元素(已排序)大于新元素,将该元素移到下一位置
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
- 将新元素插入到该位置后
- 重复步骤2~5
如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找插入排序。
例子
原始数据:
4 3 2 5 1
排序过程:
3 4 2 5 1 //插入3
2 3 4 5 1 //插入2
2 3 4 5 1 //插入5
1 2 3 4 5 //插入1
代码实现
/**
* Created by lysongzi on 16/3/2.
* 插入排序
*/
public class InsertSort {
public static void sort(int []arr){
int i, j, temp;
for (i = 1; i < arr.length; i++) {
temp = arr[i];
for (j = i - 1; j >= 0 && arr[j] > temp; j--)
arr[j + 1] = arr[j];
arr[j + 1] = temp;
}
}
}
参考资料
- 维基百科