机器学习项目流程
1. 把问题变成机器学习的问题
有的问题挺难的:叠衣服、开车
有些看似难得机器学习却容易做:翻译、
在工业界,很多问题多少会有一点自己特有的地方,需要对整个ML算法,能够做什么事 有个比较比较全面的了解
2. 收集数据、处理数据
3. 训练、调参
4. 模型部署到线上
5. 关注模型的性能:持续监控模型的预测的精度、线上延迟、...
例子:预测这个房子的价格、预测数字 是一个叫做回归的问题。
可能一开始不会去试任何什么特别高大上的深度学习的模型,我肯定是来训练一个比较简单的模型,比如说我就训练一个最简单的线性回归,主要是用来测试我的整个数据是怎么样子,用一个简单模型来测试数据的好坏
实务上可能会面临的问题:
数据的分布会发生变化,很有可能你在一些数据上训练一个模型,再去另外一个地方预测的话会有问题
比如说你在一个网站上,用户群体在发生变化的话,比如说你以前是一些比较年龄小一点的用户,整个用户的行为是不一样的
你在之前的数据上训练的模型在新的地方肯定是有问题,
或者是说你之前训练的模型&#x