公开课
文章平均质量分 73
linzch3
这个作者很懒,什么都没留下…
展开
-
【MOOC】Python网络爬虫与信息提取-北京理工大学-part 2
【第二周】 网络爬虫之提取Beautiful Soup库入门Beautiful Soup库的安装与测试中文文档:Beautiful Soup 4.4.0 文档 安装方式:pip install beautifulsoup4 测试网站(http://python123.io/ws/demo.html)的源代码(当然用requests库获取便可):<html><head><title>This is原创 2017-03-08 10:10:44 · 8339 阅读 · 2 评论 -
【MOOC】数字信号处理-电子科技大学-第三周 - 离散时间信号的变换域分析-DTFT
3.1 信号变换域分析的重要性简单来说,就是换个角度看问题。在时域上做不到或者很难做到的事情,换在频域上可能就简单许多了。比如:1.时域上的微分方程 通过 s变换 就可转换为 代数方程2.时域上的差分方程 通过 z变换 就可转换为 代数方程3.2 从CTFT到DTFT这一部分的主题是:DTFT可以从CTFT推导出来对于CTFT: 其变换对为: 对于信号xa(t),假设通过冲击串采样信号p(t原创 2017-05-05 00:21:59 · 2033 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第八&九周 - 离散时间信号的变换域分析--z变换
定义和理解Z变换可理解为DTFT的推广定义: 由于z是复数,则,则其定义可写为:可以看到,当r=1时即是DTFT的定义式。使得Z变换收敛的z的取值区间称:region of convergence (ROC,收敛域),即是求使得成立的r的区间(由r即可求z)。常用z变换对: 需要注意:z变换一样不代表原序列也一样,比如: 需要同时指定z变换和ROC才可唯一确定一个序列。因此,我们讨论一个序列的原创 2017-05-14 00:53:53 · 2377 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第十周 数字滤波器的结构
占位原创 2017-05-14 00:56:14 · 921 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第十一周 数字滤波器的设计
占位原创 2017-05-14 00:57:00 · 994 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第四&五周 - 离散时间系统的时域和变换域分析
4.1 一些概念FIR Finite Impulse Response (FIR): h[n] is finite length IIR Infinite Impulse Response (IIR): h[n] is infinite lengthLTI系统完全由h[n]决定系统具有因果性,则有: 系统具有稳定性,则有: 4.2 离散时间系统的变换域分析首先介绍两个特征函数 和原创 2017-05-05 14:02:23 · 1641 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第六&七周 - 离散傅里叶变换-DFT定义及性质
1 DFT的定义假设序列x[n]有N个点,其 N点 DFT的定义如下: 值得注意的是:DFT得到的频域的序列也是离散的。将上面两式写成矩阵形式,则有:对于正变换:对于反变换:在推导关系式时,经常需要用到的关系式:2 DFT与DTFT的关系通过采样从DTFT得到DFT已知DTFT的正变换为:对比DFT的变换式:可知:N点DFT 就是 对DTFT以采样间隔为 2*pi/N 得到的具有N个离散点的信号。原创 2017-05-05 20:51:57 · 3690 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第十二周 离散傅里叶变换--FFT算法及应用
按时间抽取的基2 FFT算法原创 2017-05-17 18:20:18 · 1430 阅读 · 0 评论 -
【MOOC】Python机器学习应用-北京理工大学 - 学期课程导学
1.机器学习简介1.1.机器学习的目的机器学习是实现人工智能的手段,其主要研究内容是如何利用数据或经验进行学习,改善具体算法的性能• 多领域交叉,涉及概率论、统计学,算法复杂度理论等多门学科• 广泛应用于网络搜索、垃圾邮件过滤、推荐系统、广告投放、信用评价、欺诈检测、股票交易和医疗诊断等应用1.2.机器学习的分类机器学习一般分为下面几种类别• 监督学习 (Supervised Learning)•原创 2017-06-06 16:04:32 · 6209 阅读 · 3 评论 -
【MOOC】Python机器学习应用-北京理工大学 - 【第一周】无监督学习
本周课程导学1.无监督学习简介利用无标签的数据学习数据的分布或数据与数据之间的关系被称作无监督学习。• 有监督学习和无监督学习的最大区别在于数据是否有标签• 无监督学习最常应用的场景是聚类(clustering)和降维(DimensionReduction)聚类和分类都是无监督学习的典型任务,任务之间存在关联,比如某些高纬数据的分类可以通过降维处理更好的获得,另外学界研究也表明代表性的分类算法如k-原创 2017-07-24 21:16:16 · 10193 阅读 · 5 评论 -
【MOOC】数字信号处理-电子科技大学-第二周 - 连续时间信号的数字化处理
2.1连续时间信号的采样Concepts of sampling采样(sampling):指把时间域或空间域的连续量转化成离散量的过程。采样流程实际的连续时间信号的数字化处理过程: 将上述过程的一些部分理想化后,可得 理想的连续时间信号的数字化处理过程: 如何采样简单来说,采样就是通过一定的“节拍”,有规律地取连续信号的一些离散的点的过程。下图所示的是 用Ts的采样间隔来对连续时间信号x(t原创 2017-05-02 23:30:22 · 5473 阅读 · 0 评论 -
【MOOC】数字信号处理-电子科技大学-第一周-数字信号处理的概述
第一周 Topic 1 数字信号处理的概述数字信号处理的特点及应用介绍About this courseTextbook: Digital Signal Processing–A Computer-Based Approach(fourth edition) sanjit K. Mitra 2012.08 Simulation Tool: MatlabWhat is DSPDSP可理解为Dig原创 2017-03-14 23:45:36 · 4560 阅读 · 0 评论 -
【MOOC】Python网络爬虫与信息提取-北京理工大学-part 3
【第三周】网络爬虫之实战一、Re(正则表达式)库入门1.正则表达式的概念正则表达式是什么正则表达式是用来简洁表达一组字符串的表达式。 使用正则表达式的优势就是:简洁、一行胜千言 一行就是特征(模式)例1:代表一组字符串: 例2:代表一组(无穷个)字符串: 例3:代表一组具有某种特点但是枚举起来很繁琐的字符串: 简单来说: 正则表达式是用来简洁表达一组字符串的表达式 正则表达式是一原创 2017-03-08 10:53:51 · 6236 阅读 · 3 评论 -
【MOOC】数学实验 - 电子科技大学-第1讲
绪论1.1绪论一、什么是数学实验 数学实验是与计算机技术、数学知识、应用数学知识有关的实践性课程。 数学实验的主要教学目的:– 培养学生对数学知识的探究意识、对数学知识的应用意识– 培养学生在实验中用所学的数学知识和计算机技术去认识问题和解决实际问题的能力– 培养学生学习数学的积极性二、数学实验课程内容 1. 数学软件的使用与程序设计,主要工具为MATLAB/Octave等数学软件 2. 数原创 2017-03-22 20:55:55 · 4297 阅读 · 0 评论 -
【MOOC】数学实验 - 电子科技大学-第2讲
MATLAB程序设计基础I写在前面:笔者对matlab的基础使用还是有一定“功底”的,所以这里只记录一些较为关键的点。2.1基本语法2.1.1语法基础赋值语句 基本语法:变量名=表达式示例: a=[2 5 6 7 9]; a(2)=10其他赋值语句, 如:变量名=函数名(输入参数列表)[变量名列表]=函数名(输入参数列表)示例: [V1,V2,V3]=myfun(M1,M2)常用命令、快捷键原创 2017-03-22 22:30:33 · 1549 阅读 · 0 评论 -
【MOOC】Python网络爬虫与信息提取-北京理工大学-part 4
网络爬虫之框架1.scrapy爬虫框架介绍1.1.scrapy爬虫框架介绍安装方法: 简要地说,Scrapy不是一个函数功能库,而是一个快速功能强大的网络爬虫框架。 (爬虫框架是实现爬虫功能的一个软件结构和功能组件集合,是一个半成品,能够帮助用户实现专业网络爬虫。) scrapy爬虫框架的组成如下: 用户提交的网络请求以及从网络上获取的信息形成数据流,在这些模块间流动。 数据流的路径有:原创 2017-03-08 10:54:29 · 5565 阅读 · 2 评论 -
【MOOC】Python网络爬虫与信息提取-北京理工大学-part 1
【第〇周】网络爬虫之前奏课程推荐阅读文章:关于反爬虫,看这一篇就够了网络爬虫”课程内容导学【第一周】网络爬虫之规则1.Requests库入门Requests库英文文档:Requests: HTTP for Humans Requests库中文文档:Requests: 让 HTTP 服务人类注意:中文文档的内容要稍微比英文文档的更新得慢一些,参考时需要关注两种文档对应的Requests库版本。(对于原创 2017-03-07 17:51:30 · 9313 阅读 · 0 评论 -
【MOOC】数学建模 - 厦门大学-第1周
第1周 引言、数学建模与数学思想第1讲 引言-何谓数学建模1、讨论定量研究与定性研究的区别。(1)给出可能的优缺点; (2)在什么情况下,应用定量研究的方法?什么情况下应用定性研究的方法?什么情况下两者同时使用好? (3)障碍人们无法使用定量研究方法分析问题的客观原因可能是什么? (4)向人文社科的教授请教,他们的研究领域是否可以应用定量研究的方法?如果应用了,是如何应用的?如果没有,原因是什原创 2017-03-25 18:48:13 · 1619 阅读 · 0 评论 -
【MOOC】Python数据分析与展示-北京理工大学-【第〇周】数据分析之前奏
课程内容导学主题思想与一组数据相关的那些事儿:如何理解一组数据表达的含义 有损地提取数据特征 内容组织全课程包括: • 8个内容单元,共12个单元 • 全课程总长4周,每周3个单元 • 每周包含一个实战型实例编程工具• 使用Anaconda IDE集成开发工具 • 需要理解和掌握如下工具的使用: • conda • Spyder • IPython课程实例• 使用Anaconda原创 2017-04-29 12:05:16 · 1836 阅读 · 0 评论 -
【MOOC】Python数据分析与展示-北京理工大学-【第一周】数据分析之表示
单元一:NumPy库入门1.1 数据的维度维度:一组数据的组织形式 一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织,对应列表、数组和集合等概念 如:3.1413, 3.1398, 3.1404, 3.1401, 3.1349, 3.1376。其中,关于列表和数组的区别是: 二维数据 二维数据由多个一维数据构成,是一维数据的组合形式,表格是典型的二维数据,其中,表头是二维原创 2017-04-30 10:39:17 · 3804 阅读 · 0 评论 -
【MOOC】Python数据分析与展示-北京理工大学-【第二周】数据分析之展示
单元4:matplotlib库入门更多可参考:http://matplotlib.org/gallery.html写在前面:matplotlib库非常复杂,我们没必要花时间去学习所有函数,对于该库,应该采用:根据我们已有的数据,查询文档或搜索,来即时选择可实现目的的函数,以实践指导理论学习。Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发(该模块的用法和matlab有很大的原创 2017-04-30 23:44:36 · 3276 阅读 · 4 评论 -
【MOOC】Python数据分析与展示-北京理工大学-【第三周】数据分析之概要
概要:提取数据的基本特征单元7:pandas库入门更多参考:http://pandas.pydata.org/Pandas是Python第三方库,提供高性能易用数据类型和分析工具,Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用。常用引用方法:import pandas as pd7.1对pandas库的理解与numpy的区别 该库基于numpy提供了两个新的数据类型:原创 2017-05-01 11:52:19 · 3846 阅读 · 2 评论 -
【MOOC】Python机器学习应用-北京理工大学 - 【第二周】有监督学习
本周课程导学监督学习的目标利用一组带有标签的数据,学习从输入到输出的映射,然后将这种映射关系应用到未知数据上,达到分类或回归的目的。分类:当输出是离散的,学习任务为分类任务。回归:当输出是连续的,学习任务为回归任务。分类学习• 输入:一组有标签的训练数据(也称观察和评估),标签表明了这些数据(观察)的所署类别。• 输出:分类模型根据这些训练数据,训练自己的模型参数,学习出一个适合这组数据的分类原创 2017-07-25 20:34:49 · 8580 阅读 · 4 评论