概念:推理 训练 模型 safetensors ckpt

本文讨论了训练和推理在AI中的角色,强调了模型训练的计算密集性与对精度、大小和速度的关注。着重介绍了常见的模型格式(如.ckpt,.pt,.pth,.safetensors)及其安全性,特别提到.safetensors格式为解决安全问题而设计,可以转换其他模型格式且保持内容不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练

训练是通过从已有的数据中学习到某种能力;

推理

推理是简化并使用该能力,使其能快速、高效地对未知的数据进行操作,以获得预期的结果。

模型

训练是计算密集型操作,模型一般都需要使用大量的数据来进行训练,通过反向传播来不断的优化模型的参数,以使得模型获取某种能力。在训练的过程中,我们常常是将模型在数据集上面的拟合情况放在首要位置的。

而推理过程在很多场景下,除了模型的精度外,还更加关注模型的大小和速度等指标。
这就需要对训练的模型进行一些压缩、剪枝或者是操作上面的计算优化。
 

常见的 AI绘画 用模型后缀名有如下几种:

1. ckpt ,2. pt ,3. pth,4. safetensors

其中,1,2,3 这三种是 pytorch[2] 的标准模型保存格式,由于使用了 Pickle,会有一定的安全风险(自行百度:pickle反序列化攻击)。

第四种为一种新型的模型格式,正如同他的名字,safe。为了解决前面的这几种模型的安全风险而出现的。safetensors 格式与 pytorch 的模型可以通过工具进行任意转换,只是保存数据的方式不同,内容数据没有任何区别。 

大模型中 .safetensors 文件、.ckpt文件和.pth以及.bin文件区别、加载和保存以及转换方式_.bin大模型文件-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值