论文阅读笔记《Self-Attention ConvLSTM for Spatiotemporal Prediction》

论文链接:https://cdn.aaai.org/ojs/6819/6819-13-10048-1-10-20200524.pdf

这是来自清华大学的一篇文章,为提取更大尺度的空间依赖特征,作者提出了self-attention memory模块,并将其引入到ConvLSTM中,取得了SOTA的成绩。

Introduction

作者先交待了时空序列预测的的重要性、应用范围,表示时空序列预测在时间域和空间域上都表现出依赖性。

第二段,ConvLSTM在时空预测方面取得了不错的成绩,但通过堆叠的卷积层来捕获远程空间依赖性,有效的感受野远小于理论感受野。现有的改进方法TraiGRU工作方式类似于可变形卷积,学习到的偏移量仅提供了稀疏的空间依赖性。因此对于长距离的空间依赖的捕捉仍然是个问题。

而自注意力模块能够在单个网络层获取全局的空间上下文,所以本文引入了额外的记忆单元 𝑀 , 并且 𝑀 可以通过门控机制来捕捉时间上长期的特征依赖。

主要贡献:

  • 提出了一种新的ConvLSTM变体,称为SA-ConvLSTM,可以成功捕获长期的空间依赖性。
  • 设计了一个基于记忆的自我注意模块(memory-based self-attention module, SAM),以在预测过程中记忆全局时空依赖性。
  • 在MovingMNIST和KTH数据集上进行多帧预测,使用TexiBJ数据集进行交通流预测,以更少的参数和更高的效率在所有数据集中获得最佳结果。

Method

Self-Attention

上图是一个Self-Attention的基础模型,H_{t} 为当前时间步的特征图,H_{t} 被映射到三个不同的特征空间,queryQ_{t}=W_{q}H_{t}key: K_{h}=W_{k}H_{t},value:V_{h}=W_{v}H_{t}其中W_{q}W_{k}W_{t}都是1x1的卷积核,设原数据为C×H×WC为通道数,则 H_{t} 为C×N,其中N=H×W

相似度得分计算公式:

归一化:

第i个位置的汇总特征是使用所有位置的加权总和来计算的: 

Self-Attention Memory Module

作者对Self-Attention基础模型加以改进,以捕捉时域和空域上的全局特征依赖,提出了Self-Attention Memory(SAM)模块,结构如上图所示。SAM模块接受两个输入:当前时间步的输入特征 H_{t} 和上个时间步的记忆单元 M_{t-1} ,结构可分为三部分:用以获取全局上下文信息的特征聚合(Feature Aggregation),以及记忆更新(Memory Updating )输出(Output)。 

Feature Aggregation

如上图,通过两个Attention将当前时间步的输入特征 H_{t} 和上个时间步的记忆单元 M_{t-1} ,分别映射为 Z_{h} 和 Z_{m} 然后进行concat,经过1×1卷积得到后面的 Z 。

Memory Updating

作者使用门控机制自适应的更新记忆单元 M ,聚合的特征 Z 与 H_{t} 堆叠并经过一维卷积来计算更新门 i_{t}^{'} 与更新值 g_{t}^{'} ,遗忘门为 1-i_{t}^{'} 。计算公式如下: 

这里作者提到,可以使用深度可分离卷积来进一步降低参数和计算量。相较于ConvLSTM,记忆单元 M 的更新不光依靠卷积操作,而且引入了聚合后的特征 Z ,因此上一步的记忆单元 M_{t-1} 包含了过去的全局时空信息。 

Output

最后,SAM通过更新后的记忆单元 M_{t-1} 与输出门 o_{t}^{'} 按元素相乘得到最后的输出:

Self-Attention ConvLSTM

将SAM模块嵌入到ConvLSTM中就得到了论文中所使用的SA-ConvLSTM:

Experiments 

 消融实验:

模型之间比较:
 

  • 17
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值